




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FromEdgetoCloud
BuildanEnd-to-endData
Closed-loopforAutonomousDrivingbyEffectivelyUtilizeNVAIE
YooCar2025.3
Empowerglobalautomakers|BecomeaforerunnerintheAIera
IndustryDevelopmentTrends
fromRule-driventoData-driven
Empowerglobalautomakers|BecomeaforerunnerintheAIera
IntelligenceisTheNewWaveinAutomotiveIndustry
Intelligentdrivinghelpssellingmorecars
Intelligentdrivinghasbecomethetopthreefactorsfor
userstochooseacar.Theupgradingandpopularizationofintelligentdrivingsystemsiscontributingtothe
growthofcarsales.
Eg:XPENGandHuaweisoldmorecars(60%-80%)with
RoboTaxiisdevelopingrapidly
InWuhan,Baidureleasedthesixth-generationdriverless
carsequippedwiththeworld'sfirstautonomousdrivinglarge-scalemodelsupportingL4leveldriverless
applications,whichisexpectedtoachievebreakevenin
Wuhanbytheendof2024;
ADASversion.
L3iscoming
ChinahasannouncedalistofthefirstbatchofL3self-drivingroadtrials,includingnineautomakersthatcandevelopmass-producedL3self-drivingproducts.
Tesla'stechnologicalevolution
TheperformanceofTeslaFSD12.5versioninresponseto
complexroadconditionsandsmoothdrivinghasgeneratedheateddiscussion,whichisexpectedtoenableautonomousparking,navigationinparkinglotsanddriverlesstransportofpassengers;
DrivingForceofAutonomousDrivingTechnology
Phase3
DataDriven
Phase1
SensingHardwareDriven
Newtechnology
Datascalegrow
Algorithmoptimization
Data
transmit
Datacollect
Model
training
driven
Rule
DataMining
Data
process
ing
radar/LidarCamera
Modeltraining
Hardware
improvement
First
dispose
Simulati
on
testing
Application
deployment
Datalabel
Emphasisonhardware
Closed-loopdatasystem
Feature:earlystage,mainlydrivenbyhardware,theimportanceofdataisbeginningtoreveal,anddataloopisintheinitialperiod;
ADASFUNCTION:L0/L1;AEB、ACC.
Feature:datascalegrowsrapidly,thedataclosed-loopdrivenbysmallmodelscannothandlelarge-scaledata,andtheemergenceofnewtechnologiessuchasAllargemodelsandcloudsimulationcontinuestoempowerhigh-levelintelligentdriving.
ADASFUNCTION:L2;highway/cityNOA
Phase2
AlgorithmDriven
Software
modularization
Component
Algorithmupdate
Feature:algorithmoptimizationmakesdataloopmoreintelligent,reducesmanualintervention,andimprovestheaccuracyandefficiencyofdataprocessing.Italsoenablesmoreefficientdataacquisition,processingandanalysis
ADASFUNCTION:L2;TJA
Datasecurity
Data
compliance
Environmentsensing
Route
planning
algorithmoptimization
Motioncontrol
DecisionMaking
update
OTA
Empowerglobalautomakers|BecomeaforerunnerintheAIera
Empowerglobalautomakers|BecomeaforerunnerintheAIera
AutonomousDrivingEvolutionRoute
Rules
driven
Datadriven
Multisens
or
Fusion
Sensor
2D
perception
Traditional
Sensor
PlanningControl
Environment
Sensor
Control
Mainstream
BEV+Transformer
Sensor
Partialrulescontrol
Sensor
Leading
EndtoEndModel(perception+PnC)
Sensor
Sensor
Future
Sensor
EndtoEndSelfDriving,Explainable
RequirementofDataClosed-LoopinADEvolution
Leading
iMlainstream
Carcontrol
Datacollect
Datatype
Dataprocess
Labeltype
Training
Datascale
Computing
requirement
Largemodel+rules
Massmarketcars
video+humanoperation
Cloud
Manual+AIlabel
sensing+largemodel
GB/day/car
*millionsofcars
high,thousandsGPU
Traditional
Carcontrol
Datacollect
Datatype
Dataprocess
Labeltype
Training
Datascale
Computing
requirement
Datadrivenrules
Collection/massmarketcars
Pointcloud+video
car+cloud
4Dlabel
prefusion+targetperception
TB/day/car
*hundreds
middle,hundredsGPU
Carcontrol
Datacollect
Datatype
Dataprocess
Labeltype
Training
Datascale
Computing
requirement
Largemodel
Massmarketcars
video+humanoperation
Cloud
AIlabel
Largemodel
GB/day/car
*millionsofcars
Veryhigh,10thousandsGPU
Future
Carcontrol
Datacollect
Datatype
Dataprocess
Labeltype
Training
Datascale
Computing
requirement
rules
Collectioncars
Pointcloud+video+map
Incar
3Dlabel
Target
perception+postfusion
GB/day/car
*hundreds
low,10GPU
IndustryBenchmark:Tesla
AftertheFSDV12update,theunderlyinglogichasbeenexplicitlychanged,
replacingalotoftherulecodewithanend-to-endautomateddriving
algorithm.Learnhumandrivinghabitsthroughthemassivedatacollectedby
shadowmode.ThelatestversionofFSDisbecomingmoreandmorelikeanoldhumandriver
WiththeAutopilotdataengineframeworkasthecore,datacollection,cleaningandAIlabel,theyaccumulatearichscenelibrary,whichisusedforend-to-endmodeltraininganddeploymentthroughasuper-large-scalecluster.
TeslahasanequivalentclusteroftensofthousandsofH100cardsandspendsmorethan$10billionperyearfordataacquisition,storage,andtraining.
ChallengesforAutomobileManufacturers
inBuildingaDataClosed-loop
CostPressureandProductMaturity
DateClosed-LoopforAutonomousDriving
Algorithmupgrade
Hardwareandsoftware
updates
Themostprominentissueinthecommercializationofintelligentdrivingdataclosedloopisthehighcostofresearchanddevelopment,processing,andoperations.Thehighcostsincreasethedifficultyofcommercializationandlimitthewidespreadapplicationofdataclosedloops.AchievingcostreductionandefficiencyimprovementinallaspectssuchasR&D,operations,andprocessingwillhelppromotethecommercializationofdataclosedloops.
Researchand
developmentcosts
datacenter
Deploymentverification
Engineer
Programmer
Operator
Toolchain
development
cloudservices
rateofflow
?Vehicleenddataneedstobetransmittedtothedatacenterorcloudplatforminrealtimeor
periodically,whichwillproducedatatransmissiontrafficcosts
?Alargeamountofstoragespaceisrequiredto
savetheoriginaldata,processeddataand
intermediateresults,whichisaffectedbystoragecapacityandstoragetype
?Thecostofcomputingincludesthecostof
computingresourcesusedfordataprocessing,analysisandmachinelearningmodeltraining
?Theresearchanddevelopmentprocessdrivenby
autonomousdrivingdataismulti-faceted,and
targeteddesignanddevelopmenttoolsarerequired,suchasdataminingtools,modelingtools,simulationscenelibrarybuildingtools,etc.
?Self-builtcomputingpowercentersgenerallyexceed1billionyuan,suchasGeelyStarWisdomComputingCenterwithatotalinvestmentof1billionyuan,andcloudcomputingpowerof8.1billiontimesper
second.
?ThecostofrelatedAImodels,suchasGPT-3trainingcostsmorethan$12million)
computing
storage
operatingcosts
timecost
Operationsand
maintenance
costs
treatmentcost
Deploymentcosts
?Itisgenerallybelievedintheindustrythatthedevelopmentofautonomousdrivingplatformtheoreticallyneeds3
months,andthecollection,labelingandtrainingneedalotoftimecost
?Highfrequencyupdatesandoperationsarerequired,
includingmassivedatastorage,softwaresystemiteration,operationsinfrastructure,andhardwareequipment
operations
?Theannotatedandprocesseddatashouldbeputintothelargemodelfortraining,andthenusedforsimulation
testinganddeploymentatthevehicleend
Empowerglobalautomakers|BecomeaforerunnerintheAIera
Empowerglobalautomakers|BecomeaforerunnerintheAIera
StatusandObjectiveofDataClosed-LoopforAutonomousDrivinginOEM
StatusofDataClosed-LoopforAutonomousDrivinginOEM
HighCostindata
TransmissionandStorage
LackofDataCompliance
Practice
TimeConsuminginModelTraining
DifficultyinDataCollection
?Qualificationsareneededfor
surveyingandmapping;
?Highcostfordatacollection
FewScenariosforSimulation
?simulation
scenariosetupneedslarge
amountofdata;
?Lowefficiencyinbuildingcornercasescenarios
?Highcostfor
datatransmissionandstorage
betweenvehicleandcloud
?Lowefficiencyinmanuallabelingoflargeamountofdata
?Slowgenerationofqualitydata;
?Lackofcomputingpowerresultingintraining
LessEfficiencyinDataLabeling
?Highcostfordatacompliance;
?Lackofpracticesfordata
compliance
in
EfficientDatatransmission
andStorage
AutomaticGenerationofData
DataLabelingEfficientModelTrainingQualitySimulationTest
Automatic
DataTransmissionCompliance
Objective
Cornerandrare
scenarioscanbe
definedin
simulationtoolstogeneratevariousdatawith
multimodallargemodel.
Dataarepre-
processedinvehiclesorlocaledgesitestoeaseoftheburdenoftransmissionand
storage.Onlykey
dataareuploadedtocentralsites.
Distributed
architectureand
parallelcomputingpowerofcloud
simulationenhanceoverallefficiency;
scenariogenerationabilityenriches
DatalabelingisdoneautomaticallywithAIlargemodeltolowerhumancostand
improveefficiency.
Largeamountof
qualitydataareusedformodeltrainingtoensuremodel
accuracyand
generalizationability.
Datacompliancepracticesare
enforcedtoavoiddatabreachandtampering.
simulationscenarios.
DataClosed-loopToolchain
TheYooDriveCloudsolutioncollects,stores,processesanddistributeslargeamountsofin-vehicledatatosupportawiderangeof
applications.Bybuildingacompliancedataframework,wecanrelievecustomers'worriesaboutdatacomplianceandhelpcustomersrealizetheclosed-loopofautonomousdrivingdataandtheefficientiterativedevelopmentandupdateofcrowd-sourcedmaps.Theself-developeddataclosed-looptoolchainprovidesdata-drivenandclosed-loopprocessing,includingacquisition,processing,storage,training,simulationandothermodulestopromotethematurityofalgorithmmodels.
Thedataclosed-loopincludesmodulessuchascollection,generation,processing,
Out-of-boxSolutions
Data
recharge,andanalysis.Graduallyfromtheclosed-loopcollectionofvehicledatatothe
applicationoflarge-scalemodelsofmassproductionvehicles.
AIDC
ProvideAIcomputingcentersolutionsandcomputingpowerleasingbasedonNVIDIAordomesticGPUclusters,andprovidecomputingpowermanagementandbillingservices.
Toolchain
Itprovidesintegratedmultipleannotationservices,automaticannotationofdata,distributedalgorithmtraining,andsupportmulti-taskandqueueresourceschedulingmanagement.
Model
Providemodelapplicationmarketandonlineinferenceservices,one-stopsolutiontolargemodelapplicationandinference,andprovidemorepersonalizedandintelligentservices.
One-stopservice
Providefull-stackandcompletetoolchain
solutions,including:hardware+software+
computingpower+serviceone-stopservice;Connecttoolstoenhancebusinesscontinuity.
Strongcompatibilityandunified
management
Throughdataformatconversionandunification,multipledifferentplatformscanbeconnectedatthesametime,reducingmanagementcomplexity.
CustomizedService
Flexiblesystemarchitecture,with
generalizationabilityandadaptability,toprovidecustomizedservices.
AutonomousDrivingSolution
One-stopServiceforVehicle,Network,CloudandEdgecomputing
AutonomousDrivingSolution
Cloud
Edge
Network
Vehicle
TSP
AutonomousDrivingToolchainPlatform
Empowerglobalautomakers|BecomeaforerunnerintheAIera
Empowerglobalautomakers|BecomeaforerunnerintheAIera
DualSIMCardsNetworkingConnectionManagement-(TBOX+SDK)
MobileOperatorscanswitchflexiblyondemand
DualslMicardssupportcapability
nIncooperationwithleadingautomotivecompaniesintheindustry,YooCarTechnologytakestheleadinrealizingthedual-cardnetworkingsupportcapability,helpingcustomertoflexiblyselectnetworkingoperators,andprovidingservicesincludingscenarioanalysis,switchingmodedesignandswitchingstrategymanagement.
nMNO,thevehiclenetworkingbusinessmanagementplatformofYooCarTechnology,hasbeenfullyequippedwiththedual-cardmanagementcapabilitiesofnetworkedvehicles,suchasdual-cardstatusmaintenance,dual-cardpackageorderingandconsumptioninquiry.
nProvideuserswithhighlyavailablevehiclenetworkingservicesandgreatlyimprovetheuserexperience.Dual-cardnetworkingsupportcapabilitycanflexiblyadapttodual-carddual-standby,dual-carddual-passanddual-cardsingle-standbyoperationmodesaccordingtocustomerneeds.
Thedataqualityishigh
Theintegrityofdatauploadisensuredthroughthedual-cardhigh-qualitytransmissionchannel,andthedataqualityissignificantlyimproved.
Gooduserexperience
Selectthebestoperatorthroughdual-cardswitchingtoensurethattheentertainmentexperiencedoesnotconflictwiththedatacollectionandreturn,andenhancetheuserexperience.
Andthatreal-timeperformanceisgood
Real-timelargebandwidthdatauplinkanddownlinkpowerdataclosed-loopandremotedrivingfunctions.
DedicatedCoreNetworkforOEM
ComparedwithtelecommunicationoperatorsprovidingconnectionservicesbycommonIoTCore,YoocarhasbuilttheDedicatedCoreandassociatedCMPthroughextensiveCAPEXandOPEX.TheDedicatedCoreandCMPprovidesdifferentiatedcapabilitiesforconnected-carservices,featuringrobustconnection,flexiblemanagementandquickresponse.
OEMTSPCloud
Yoocar
ConnectivityMgt.
Platform
Operator
OEM
MNO
Other
Modules
4G/5GDedicatedCore
ServiceResponseTimeCutby80%
Downby
83%
s
10day
s
30min
CommonIoTNWDedicatedCore
SignalingCapture
15day
Downby
80%
Downby
90%
Config.Change
BillingDelay
3days
5min
1day
?FlexibleAPN-basedcontrolandapplication-basedcontrolandanalysiswithinoneAPN
connectedvehicleissuesareresolvedbeforecustomercomplaintsarise.The
inspectionservices.Routineprobingandinspectionsareconductedonbusinessnodestoensurethat
platformhasalreadyprovidedinspectionandO&MservicesforallbrandsunderGeely,aswellasfor
Empowerglobalautomakers|BecomeaforerunnerintheAI
IntelligentOperationandMaintenanceManagementServiceforVehicleNetwork
Carafter-salesservice400seatsYoukaiexpertTripartiteexpertsOperationsand
maintenanceexpert
Dialoguerobot
Manualprocessing-after-sales/agent/expertaccess
clothes
affair
request
ask
come
into
contact
with
enter
reportoutsideknow
know
storeroo
m
joinin
marriage
place
Thetube
texture
transport
goout
Diagnostictemplates
Workorderaccess
Inspectionrobot
Workordermatching
Workorder
Workorder
processingtime
Processtemplates
completed
Tripartitediagnosisaccess
ThethreepartiessupportKPI
Telepresencerobot
Workorderprocessing
manualhandling
Routinediagnosticaccess
SLAestimate
Systemquery
businessdiagnosis
Documentrobot
Theepicenterofevents
Changereleasemanagement
knowledgebase
Interfacerobot
TSP
DataPlatform
CP/SPserve
Automatic/systemprocessing--accesstoexternalsystemcapabilities
carrieroperatorCMP
Intelligentdrivingdataaccess
operationandmaintenanceservices
Lnrt,LiAuto,andZhiJi.
TheYoukaIntelligentOperationsandMaintenanceManagementPlatformisanewgenerationofoperationsmanagementplatformsdevelopedbasedonthelatestAIOpsstandardsfromTMForum.Itoffersone-stopintelligentO&MservicespoweredbyAIrobots,providingpredictivemaintenanceforautomakersthroughself-serviceresponses,probing,and
Empowerglobalautomakers|BecomeaforerunnerintheAIera
OTAandRemoteDriving
5GEdgeCloud
Thankstothe5GDedicatedCoreand5GSAdataoffloadingtechnology,Yoocarprovidescustomizededge-computingbasedservicesfeaturingworry-freebandwidth,telecomgradeandend-to-endmonitoringthatenablescommercialdeploymentofOEMserviceslikeassistanttele-driving,OTA,voiceassistantandcloud-basedin-vehicleinfotainment.
MNOCoreInternetPublicCloud
ADData
MNOCore
CollectionPrivateCloud
VehicledataandimagesuploadingTele-drivinginstructionssending
EdgeCloud
LatencyCutforBetterExperience
Datatransmissionlatencyisreducedforquicktransactionresponseandbetteruserserviceexperience
LoadReductionforCostEffectiveness
Dataprocessingatedgesiteseasesthe
computingandstorageburdenofcentralsitesandcutsutilizationoftransmissionbandwidth
SecurityandPrivacyProtection
Dataencryptionandprivacyprotectionaredoneatlocaledgesitesforenhancedsecurityoftelematicsservices.
EdgeCloudEmpowersOTAandRemoteDriving
Usingtheedgecomputingcapability,thedelayandjitterare
Province-1
I-SMF
AMF
significantlyreduced.Themeasureddelayisreducedfrom55msto25ms,andthejitterisreducedfrom280msto35ms.
I-UPF
TSPOTAserver
Province-2
I-SMF
AMF
Vehiclenetworkdedicatednetwork
APN1
PCF
I-UPF
SMF
AMF
……
RemotedrivingcontrolOTAupgradepatchMapdataupdated
Edgecomputingcloudresourcepool
Province-N
UPF
APN2
(SpecificIPfor
services)
I-SMF
AMF
I-UPF
Internet
APN2
Empowerglobalautomakers
|BecomeaforerunnerintheAIera
Empowerglobalautomakers|BecomeaforerunnerintheAIera
Data
standardization
Datacleansing
datamining
Dataannotation
DQC
datamining
DataMasking
Auditmonitoring
Datacompliance
Complianceflow
Dataprocessing
Dataannotation
Datastorage
Distributed
storage
filestorage
Storage
acceleration
SimulationPlatform
Parallelsimulation
Simulationplayback
Simulation
evaluation
SystemArchitecture
Modeltraining
Modeltraining
Modelevaluation
Queue
management
machinelearning
Bigdata
Trainingcluster
/inferenceframework
AIworkloadmanagement
HDFS
MinIO
Spark
Flink
Prometheus
CICD
MySQL
Redis
Kafka
ES
Databasesandmiddleware
storage
Systemintegration
Hashpools
Computingpowerscheduling
Hashratesplitting
Computingpowermanagement
K8s
storage
Internet
compute
DataManagementPlatform
?Thedatamanagementplatformisoneoftheimportantfoundationsfortheresearchanddevelopmentofhigh-levelassisteddriving/autonomousdriving,and
undertakesservicessuchasdataupload,datastorage,dataprocessing,dataapplicationandmanagementofintelligentdriving.Theintegrateddatamanagementplatformallowsdatatoformabenignclosed-loopnetworkbetweenvariousbusinessplatforms,helpingtoreleasemorevaluefromdata.
?Itprovidesdatasupportforcornercaseproblemanalysis,modeltraining,dataannotation,simulationscenarios,evaluationandverificationintheR&Dprocessofhigh-levelassisteddriving/autonomousdriving.
DeployonBoard
Acquisition
Requirements
AlgorithmEvaluation
ProductionCar
ModelTraining
SimulationTesting
ResourceSharing
AlgorithmModelIsolation
Data
UnifiedAnnotationFormatConversion
Simulation
Library
Manageme
nt
Algorithmi
cModels
Manage
Label
Data
Manage
SceneLibraryManage
Source
Data
Manage
Data
DataSetManage
managementplatform
UnifiedScheduling
andMulti-task
DistributionofData
tobeLabeled
DataCollectionDataUploadsDataProcessingSceneMiningDataAnnotation
Empowerglobalautomakers|BecomeaforerunnerintheAIera
DataClosed-LoopComplianceServices
Compliancecloud
(ClassAqualificationentitycontrol)
Compliancedatamanagement
Datastorageusagearea
Compliancesupervision
CustomerVehicularCloud
ComplianceBusinessCloud
Onlinereturn
(Internetline)
Dataferryarea
ComplianceBusinessCloud
network(non-
GISdata)
Corporate
Customerofficearea
TerminalPC
Otherpublicnetworkfacilities
DataAccommodation
Service
GPSdeflection
Massproduction
mapsupplier
ProductionVehicles
Businessdata
(Testreports,modelfiles,
traininglogfiles,etc.)
VDI
(Qualificatio
nEntity
Control)
Picturevideoafterdesensitizationand
decryptionanddiscontinuoussingle-frame
pointclouddataafterframeextraction
(excludingabsoluteposition)
Dataforwarding
Datausagearea
ComplianceBusinessCloud
Specialline(samecity)Complianceroom
Problem
management
Dataannotation
Dataannotation
reductionarea
CompliancePrivateCloud
Offlinemailing
Datauploadservice
......
VDI
(Managementandcontrolofqualification
subject)
Customer
Datastore
Trafficflow
Dataforwarding
geographicDesensitizationanddeclassificationof
non-geographicdataComplianceWorkstation
Dataflow
AutopilotR&DandDataComplianceUse
ScenelibraryAdministration
Compliance
Workstation
Scenariolibrarymanagement
Modeltraining
Modeltraining
Special
line(samecity)
Simulationtest
Simulationtest
Subjectofqualification
EngineeringVehicles
Uploadroom
DataDesensitizationandDecryptionService
Three-partyannotation
supplier
SpecialLine
(Inthesamecity)
Desensitizedanddeclassifieddata
Datauploadandcomplianceprocessing
Datacollectionandtransfer
Desensitizationanddensity
Problem
management
Datausagearea
ComplianceBusiness
Cloud
Complianceapproval
Empowerglobalautomakers|BecomeaforerunnerintheAIera
Product&Service
?VehiclenetworkservicemeetsthespecialneedsofAIEVnetworkcommunication;
?IntelligentcomputingservicesmeetthetechnicalneedsofautomobileenterprisestobuildAIEV,including:①Autonomousdrivingtoolchain②Specializedlargemodelresearchanddevelopmentsupportforautomobileenterprises③CockpitAIinteractiontechnologysupport;
?One-stopsolutionforartificialintelligenceonbicycles,coveringnetworkconnection,datasecurity,AIlargemodeldevelopment,AIfunctionalloadingandpracticalapplication,AIecologicalconstruction,AIfull-chainproductservicesystem;
Globalconnectivityservices
High-speednetworkingisanecessityforAI
Basedonthedualcardservicecapability,itensureslowlatencyandnobreakpointofnetworkconnection,
layingafoundationforautonomousdrivingandintelligentcockpitAI.
Theprivatenetworkensuresdatasecurity
Basedontheadvantagesofdedicatednetwork
technology,dynamicmonitoringofthewholelinkofdatacirculationisrealizedtoensuredatasecurityandeliminatetheriskofdataprivacyleakagecausedby
largeAImodels.
Fullchainintelligentcomputingproductsandservices
Autonomousdrivingtoolchainplatform
Itincludesdatamanagementplatform,data
annotationplatform,modeltrainingplatformandsimulationtestingplatform,andself-
developedfullchain.
Automobilecompanieslargemodelcomputingpower+R&Dsupport
Computingpower+R&Dtoolssupportcarcompaniestodevelopdedicatedlargemodelsbasedontheirown
needs/cabinoperatingsystem.
CabinAIinteractionfunctiontechnicalsupport
Basedonthemaincirculationlargemodelandthe
applicationplatformofthelargemodel,anAIinteractiveassistantwillbebuilttorealize"AIinteraction"onthebus.
NVAIEEmpowersDataClosed-loop
forAutonomousDriving
YoocarandNVIDIACooperatetoEmpowerCarCompanies
Empowerglobalautomakers|BecomeaforerunnerintheAIera
DataClosed-loopToolChainTechnologyEvolutionandIterationAV1.0->AV2.0
?DataCleaning
?Manual
Annotation
?ModelTraining
?SceneReplay
?Inference
Optimization
AV1.0AV2.0
?AutomaticCleaningandLabeling
?TrainingAcceleration
?BaseModelPool
?Large
Language/MultiModelSupport
?WorldModelReasoning
Optimize
?SyntheticDataGeneration
?BasedonNeural
NetworksScene
ReconstructionEngine
?WorldModelSimulation
?ImageIndexingandRetrieval
AV…
Empowerglobalautomakers|BecomeaforerunnerintheAIera
DataClosed-loopToolChain&NvidiaNVAIE/OmniverseEna
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)手動(dòng)托盤車項(xiàng)目投資可行性研究報(bào)告
- 2025至2030年中國(guó)外貿(mào)針織服裝項(xiàng)目投資可行性研究報(bào)告
- 2025至2030年1″雙面齒安全柔性手用鋸條項(xiàng)目投資價(jià)值分析報(bào)告
- 2025年裝配式潔凈室項(xiàng)目可行性研究報(bào)告
- 零食折扣店商業(yè)模式分析與發(fā)展規(guī)劃
- 迪拜產(chǎn)業(yè)投資潛力與發(fā)展趨勢(shì)分析
- 2025公司廠級(jí)安全培訓(xùn)考試試題及答案7A
- 2025企業(yè)負(fù)責(zé)人安全培訓(xùn)考試試題及參考答案【新】
- 25年承包商入廠安全培訓(xùn)考試試題(黃金題型)
- 2025新版車間安全培訓(xùn)考試試題答案參考
- 歐洲文明與世界遺產(chǎn)智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 免考勤申請(qǐng)書范文
- 船舶建造質(zhì)量標(biāo)準(zhǔn)(輪機(jī)部分)
- 國(guó)土調(diào)查調(diào)查項(xiàng)目招投標(biāo)書范本
- 中國(guó)古代都城空間布局演變特征
- 砂石料加工場(chǎng)施工方案兩篇
- 小學(xué)科學(xué)期末復(fù)習(xí)經(jīng)驗(yàn)交流
- TROXLER3440核子密度儀
- 污水處理廠安全生產(chǎn)費(fèi)用提取使用管理制度
- 化學(xué)專業(yè)英語課文翻譯
- 《大型群眾性活動(dòng)安全許可申請(qǐng)表》
評(píng)論
0/150
提交評(píng)論