泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁泉州工程職業(yè)技術(shù)學(xué)院《機器視覺基礎(chǔ)與實踐》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動提取特征+深度學(xué)習分類器D.顏色直方圖特征+樸素貝葉斯2、在計算機視覺的視覺跟蹤與監(jiān)控應(yīng)用中,需要對特定目標進行持續(xù)的跟蹤和監(jiān)測。假設(shè)要對一個在大型商場中移動的可疑人員進行跟蹤,同時要應(yīng)對人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標跟蹤算法B.基于深度學(xué)習的單目標跟蹤C.基于粒子濾波的跟蹤D.基于特征匹配的跟蹤3、在計算機視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設(shè)我們有一個大型的圖像數(shù)據(jù)庫,以下哪種圖像表示方法能夠提高圖像檢索的效率和準確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學(xué)習的圖像嵌入表示D.基于顏色直方圖的圖像表示4、假設(shè)要構(gòu)建一個能夠識別人臉表情的計算機視覺系統(tǒng),用于情感分析和人機交互??紤]到表情的細微變化和個體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對抗網(wǎng)絡(luò)5、在計算機視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像6、計算機視覺在醫(yī)療手術(shù)中的應(yīng)用可以為醫(yī)生提供輔助和支持。假設(shè)在一個微創(chuàng)手術(shù)中,計算機視覺用于引導(dǎo)手術(shù)器械。以下關(guān)于計算機視覺在醫(yī)療手術(shù)中的描述,哪一項是不正確的?()A.可以通過實時圖像分析,為醫(yī)生提供器械與組織的相對位置和姿態(tài)信息B.能夠?qū)κ中g(shù)區(qū)域進行精準的分割和標注,幫助醫(yī)生識別關(guān)鍵結(jié)構(gòu)C.計算機視覺在醫(yī)療手術(shù)中的應(yīng)用已經(jīng)非常成熟,不存在任何風險和誤差D.可以與機器人手術(shù)系統(tǒng)結(jié)合,實現(xiàn)更精確和穩(wěn)定的手術(shù)操作7、在計算機視覺中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學(xué)習方法來實現(xiàn)B.深度學(xué)習方法在圖像超分辨率重建中能夠生成更清晰、逼真的細節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制8、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要對一段視頻中的物體運動進行分析,以下關(guān)于光流估計的描述,正確的是:()A.稀疏光流估計只計算圖像中部分特征點的運動,無法反映整體的運動趨勢B.稠密光流估計能夠得到圖像中每個像素的運動向量,但計算復(fù)雜度較高C.光流估計的結(jié)果不受光照變化和噪聲的影響,具有很高的準確性D.光流估計只能用于分析勻速直線運動的物體,對于復(fù)雜的運動模式無法處理9、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學(xué)習的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法10、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習的時空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法11、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭12、在計算機視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時盡量保持圖像的質(zhì)量。假設(shè)要對一組高清圖像進行壓縮,以節(jié)省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法13、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設(shè)要在一個在線教育平臺中檢測學(xué)生的學(xué)習狀態(tài)。以下關(guān)于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學(xué)習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習表情的特征表示C.表情識別能夠準確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準確判斷14、計算機視覺在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠?qū)η騿T的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)15、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進行配準,以下關(guān)于圖像配準方法的描述,哪一項是不正確的?()A.基于特征的圖像配準方法通過提取圖像中的顯著特征,并進行匹配來實現(xiàn)配準B.基于灰度的圖像配準方法直接比較圖像的灰度值,計算相似性度量來完成配準C.圖像配準的精度主要取決于特征提取的準確性和匹配算法的性能D.圖像配準總是能夠完美地將兩張圖像對齊,不存在任何誤差16、在計算機視覺的視覺跟蹤任務(wù)中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是17、當進行圖像的目標計數(shù)任務(wù)時,假設(shè)要統(tǒng)計一張圖像中某種物體的數(shù)量,例如統(tǒng)計羊群中的羊的數(shù)量。以下哪種方法可能更準確地完成計數(shù)任務(wù)?()A.基于深度學(xué)習的目標計數(shù)模型B.手動逐個計數(shù)C.估計圖像中物體的平均大小,然后計算總面積來推算數(shù)量D.隨機猜測物體的數(shù)量18、計算機視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)一個工廠需要檢測生產(chǎn)線上的零件是否存在缺陷。以下關(guān)于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應(yīng)用已經(jīng)非常成熟,不需要人工干預(yù)和校驗19、計算機視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是20、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學(xué)習算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)二、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋計算機視覺在殯葬行業(yè)中的應(yīng)用。2、(本題5分)解釋計算機視覺中圖像超分辨率重建的方法。3、(本題5分)簡述圖像的形態(tài)學(xué)處理操作。4、(本題5分)簡述圖像的顯著性檢測的目的。5、(本題5分)說明計算機視覺在政務(wù)服務(wù)中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某大學(xué)的校園導(dǎo)視系統(tǒng)設(shè)計,探討其如何通過圖形、色彩、文字等元素為師生和訪客提供清晰的導(dǎo)航,提升校園的便利性。2、(本題5分)研究一款具有未來感的汽車內(nèi)飾設(shè)計,剖析其如何通過材質(zhì)、色彩、功能布局等元素為駕駛者和乘客提供舒適和便捷的體驗。3、(本題5分)解析某電商平臺的商品推薦頁面設(shè)計,探討其在視覺效果、信息傳達、用戶個性化推薦方面的表現(xiàn),以及如何提高用戶的購買決策。4、(本題5分)分析某慈善機構(gòu)的宣傳海報設(shè)計,研究如何

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論