第26章《概率初步》單元復(fù)習(xí)題-2024-2025學(xué)年滬科版九年級數(shù)學(xué)下冊_第1頁
第26章《概率初步》單元復(fù)習(xí)題-2024-2025學(xué)年滬科版九年級數(shù)學(xué)下冊_第2頁
第26章《概率初步》單元復(fù)習(xí)題-2024-2025學(xué)年滬科版九年級數(shù)學(xué)下冊_第3頁
第26章《概率初步》單元復(fù)習(xí)題-2024-2025學(xué)年滬科版九年級數(shù)學(xué)下冊_第4頁
第26章《概率初步》單元復(fù)習(xí)題-2024-2025學(xué)年滬科版九年級數(shù)學(xué)下冊_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版九年級數(shù)學(xué)下冊第26章概率初步單元復(fù)習(xí)題

一'單選題

1.化學(xué)實(shí)驗室有四種溶液:分別是氫氧化鈉溶液,碳酸氫鈉溶液,稀鹽酸溶液和稀硫酸溶液,從中隨機(jī)

取出兩種適量溶液,充分混合,有氣體生成的概率是()

1111

A.—B.—C.—D.一

6432

2.下列事件中,屬于不可能事件的是()

A.明天會下雨

B.拋出一枚硬幣恰好正面朝上

C.從裝有8個白球的袋子中,摸出紅球

D.367人中至少2人生日在同一天

3.甲、乙、丙、丁四位同學(xué)去看電影,還剩下如圖所示座位,乙正好坐在甲旁邊的概率是()

4.下列事件中,屬于隨機(jī)事件的是()

A.零下15℃的天氣,狂風(fēng)暴雨B.直角三角形的兩銳角互余

C.射擊運(yùn)動員射擊一次,命中9環(huán)D.實(shí)心鐵球漂浮在水面上

5.在一個不透明的盒子中裝有n個小球,它們除了顏色不同外,其余都相同,其中有4個白球,每次試

驗前,將盒子中的小球搖勻,隨機(jī)摸出一個球記下顏色后再放回盒中.大量重復(fù)上述試驗后發(fā)現(xiàn),摸到

白球的頻率穩(wěn)定在0.4,那么可以推算出n大約是()

A.10B.14C.16D.40

6.在一個不透明的口袋中,裝有除顏色外其他都相同的4個白球和〃個黃球,某同學(xué)進(jìn)行如下試驗:從

袋中隨機(jī)摸出1個球記下它的顏色,放回、搖勻,為一次摸球試驗,記錄摸球的次數(shù)與摸出白球的次數(shù)

的列表如下:

摸球試驗的次數(shù)1002005001000

摸出白球的次數(shù)2139102199

根據(jù)列表可以估計出n的值為()

A.16B.4C.20D.24

7.二十四節(jié)氣是中華民族農(nóng)耕文明的智慧結(jié)晶,被國際氣象界譽(yù)為“中國第五大發(fā)明”.小鵬購買了四張

形狀、大小、質(zhì)地均相同的“二十四節(jié)氣”主題郵票,正面分別印有“立春”“立夏”“秋分”“大暑”四種不同的

圖案,背面完全相同,他將四張郵票洗勻后正面朝下放在桌面上.從中隨機(jī)抽取兩張郵票,恰好抽到“立

春”和“立夏”的概率是()

8.在當(dāng)今科技飛速發(fā)展的時代,科技館已經(jīng)成為人們接觸科學(xué)、感受科技魅力、培養(yǎng)創(chuàng)新精神的重要場

所.如圖為某市科技館“科技與生活”和“挑戰(zhàn)與未來”兩個展廳的路線圖.小宣同學(xué)通過入口后,隨機(jī)選

擇一條道路前進(jìn),每逢路口再任選一條道路,最終到達(dá)任意一展廳后停止前進(jìn),則小宣最后進(jìn)入“科技與

生活”展廳的概率是(

1

A.-

3

9.一個盒子里有完全相同的三個小球,球上分別標(biāo)上數(shù)字-1,1,2.隨機(jī)摸出一個小球(不放回),將

其數(shù)字記為2,再隨機(jī)摸出另一個小球,將其數(shù)字記為4.則函數(shù)丁=川+4經(jīng)過一、三、四象限的概

率是()

1125

A.—B.—C.—D.一

2336

10.從一個不透明的口袋中隨機(jī)摸出一球,再放回袋中,不斷重復(fù)上述過程,一共摸了150次,其中有

50次摸到黑球,已知口袋中僅有黑球10個和白球若干個,這些球除顏色外,其他都一樣,由此估計口袋

中白球的個數(shù)約為()

A.10B.15C.20D.30

二、填空題

11.小明和小穎分別從三部影片中隨機(jī)選擇一部觀看,則他們選擇的影片相同的概率為.

12.小明隨意打開八下數(shù)學(xué)書,正好打開到88頁,是事件(填隨機(jī)、必然或不可能).

13.如圖,轉(zhuǎn)盤被分成5個面積相等的扇形,任意轉(zhuǎn)動這個轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針落在陰

影區(qū)域的概率為

14.從而,0,3.14三個數(shù)中隨機(jī)選擇一個數(shù),則這個數(shù)是無理數(shù)的概率是.

三'解答題

15.盲猜飲料挑戰(zhàn):小明知道不透明的箱子中裝有雪碧、芬達(dá)、可口可樂和健力寶這4種飲料,但不清

(1)小明猜對擺放在位置①的飲料的概率為.

(2)求小明猜對所有位置上飲料的概率.

16.今年6月份,永州市某中學(xué)開展“六城同創(chuàng)”知識競賽活動.賽后,隨機(jī)抽取了部分參賽學(xué)生的成

績,按得分劃為A,B,C,D四個等級,A:,B:,C:,D:.并繪制了如圖兩幅不完整的統(tǒng)計圖,請結(jié)

合圖中所給信息,解答下列問題:

(1)請把條形統(tǒng)計圖補(bǔ)充完整.

(2)扇形統(tǒng)計圖中機(jī)=,〃=,B等級所占扇形的圓心角度數(shù)為.

(3)對甲、乙、丙、丁4名參加知識競賽學(xué)生進(jìn)行分組作業(yè)調(diào)查,要求兩人一組,求甲和乙恰好分

在同一組的概率.(用列表或樹狀圖方法解答)

17.隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡

的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制成了

如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

學(xué)生最喜歡的溝通方式條形統(tǒng)計圖

學(xué)生最喜歡的溝通方式扇形統(tǒng)計圖

(1)這次統(tǒng)計共抽查了名學(xué)生;在扇形統(tǒng)計圖中,表示的扇形圓心角的度數(shù)

為。;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?

(4)某天甲、乙兩名同學(xué)都想從“微信”、“口口,、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請

用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

18.隨著高鐵、地鐵的大量興建以及鐵路的改擴(kuò)建,人們的出行方式越來越多,出行越來越便捷.為保

障旅客快捷、安全的出入車站,每個車站都修建了如圖所示的出入閘口.某車站有三個出入閘口,分別

記為A,B,C.

(1)一名乘客通過該站閘口時,選擇B閘口通過的概率是;

(2)當(dāng)兩名乘客通過該站閘口時,請用畫樹狀圖或列表法求這兩名乘客選擇不同閘口通過的概率.

19.為促進(jìn)同學(xué)間交流,豐富校園文化生活,增強(qiáng)班級團(tuán)隊意識和凝聚力.某校七年級將在操場上舉辦

“綁腿跑”趣味運(yùn)動比賽(每班有5名隊員排成一列,每相鄰兩隊員的相鄰?fù)扔媒壨葞Ы壴谝黄穑⒂谄?/p>

跑線后,隊員通過協(xié)調(diào)配合在跑道上共同行進(jìn)).為做準(zhǔn)備,七(1)班選拔了15名學(xué)生參加訓(xùn)練,并將

15名學(xué)生的身高(單位:cm)數(shù)據(jù)統(tǒng)計如下:162,163,163,165,166,166,166,167,167,

168,169,169,171,173,176;

(1)15名學(xué)生的身高數(shù)據(jù)如下表:

平均數(shù)中位數(shù)眾數(shù)

167.4mn

根據(jù)信息填空:機(jī)=,n=

(2)在訓(xùn)練中,將15名學(xué)生分成三組進(jìn)行練習(xí),發(fā)現(xiàn):對于不同組的學(xué)生,如果一組學(xué)生的身高的

方差越小,則該組學(xué)生獲勝機(jī)率越大.據(jù)此推斷:在下列兩組學(xué)生中,獲勝機(jī)率大的是(填

“甲組”或“乙組”);

甲組學(xué)生的身高163166166167167

乙組學(xué)生的身高162163165166176

(3)根據(jù)安排,剩下的同學(xué)組成丙組.從丙組同學(xué)中,隨機(jī)抽取兩人擔(dān)任引導(dǎo)員,求恰好抽到兩名

引導(dǎo)員身高相同的概率.

20.中國古代的“四大名著”是指《紅樓夢》《三國演義》《西游記》《水滸傳》,“四大名著”是中國文學(xué)史中

的經(jīng)典作品,是世界寶貴的文化遺產(chǎn).某校舉行文化節(jié)講名著活動,現(xiàn)將四大名著制作為卡片,《紅樓

夢》《三國演義》《西游記》《水滸傳》分別對應(yīng)的編號為A,B,C,D(除編號外,卡片其余完全相

同),將它們背面朝上,洗勻后放在桌面上.

(1)琳琳隨機(jī)抽取1張卡片,抽到卡片編號為B的概率為.

(2)若琳琳從這四張卡片中隨機(jī)抽取一張,明明接著從余下的3張卡片中隨機(jī)抽取1張,請用列表

或畫樹狀圖的方法求琳琳、明明兩人中恰好有一人抽中《紅樓夢》(即A卡片)的概率.

21.在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黃球6個.

(1)先從袋子中取出m個紅球(m>1且加為正整數(shù)),再從袋子中隨機(jī)摸一個小球,將“摸出

黃球”記為事件A.

①若事件A為必然事件,則m的值為;

②若事件A為隨機(jī)事件,則加的值為.

(2)先從袋子中取出m個紅球,再放入m個一樣的黃球并搖勻,經(jīng)過多次試驗,隨機(jī)摸出一個

4

黃球的頻率在y附近擺動,求加的值.

22.某商場舉行促銷活動,消費(fèi)滿一定金額的顧客可以通過參與摸球活動獲得獎勵.具體方法如下:從

一個裝有2個紅球、3個黃球(僅顏色不同)的袋中摸出2個球,根據(jù)摸到的紅球數(shù)確定獎勵金額,具體

金額設(shè)置如下表:現(xiàn)有兩種摸球方案:

摸到的紅球數(shù)012

獎勵(單位:元)51020

方案一:隨機(jī)摸出一個球,記下顏色后不放回,再從中隨機(jī)摸出一個球;

方案二:隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球.

(1)求方案一中,兩次都摸到紅球的的概率;

(2)請你從平均收益的角度幫助顧客分析,選擇哪種摸球方案更有利?

23.在一個不透明的布袋中裝有相同的三個小球,其上面分別標(biāo)注

數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點(diǎn)M的橫坐標(biāo);將球放回

袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點(diǎn)M的縱坐標(biāo).

(1)寫出點(diǎn)M坐標(biāo)的所有可能的結(jié)果;

(2)求點(diǎn)M在直線y=x上的概率;

(3)求點(diǎn)M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù)的概率.

答案解析部分

L【答案】C

2.【答案】C

【解析】【解答】解:A、???因為天氣變化是不確定的,既有可能下雨,也可能不下雨,,“明天會下

雨”,是隨機(jī)事件,不符合題意;

B、因為硬幣拋出后正面朝上或反面朝上的概率各為50%,,“拋一枚硬幣正面朝上”,是隨機(jī)事件,

不符合題意;

C、因為袋子里只有白球,不可能摸出紅球,,“從只裝有8個白球的袋子中摸出紅球”,是不可能事

件,符合題意;

D、因為一年最多有366天(閏年),所以367人中至少有2人生日在同一天,,“367人中至少2人

生日在同一天”,是必然事件,不符合題意.

故答案為:C.

【分析】在一定條件下,可能發(fā)生,也可能不會發(fā)生的事件就是隨機(jī)事件;在一定條件下,一定不會發(fā)

生的事件就是不可能事件;在一定條件下,一定會發(fā)生的事件就是必然事件,根據(jù)定義即可一一判斷得

出答案.

3.【答案】A

4.【答案】C

5.【答案】A

4

【解析】【解答】???通過大量重復(fù)試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于04,,一=0.4,解得:n=10.故

n

選A.

【分析】利用大量重復(fù)實(shí)驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,

根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概

率.

6.【答案】A

【解析】【解答】解:.??由表格知,摸到白球的頻率穩(wěn)定于02

4

------=0.2,

4+n

解得:n=16.

故答案為:A.

【分析】利用大量重復(fù)試驗,事件發(fā)生的頻率在某個固定位置擺動,并且擺動的幅度越來越小,根據(jù)這

個頻率穩(wěn)定性,可以利用頻率來估計概率,再利用概率公式列式并求解.

7.【答案】C

8.【答案】C

9.【答案】B

10.【答案】C

【解析】【解答】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是言=;,

設(shè)口袋中大約有x個白球,則』一=」,

x+103

解得x=20.

經(jīng)檢驗,x=20是原方程的解,

所以,口袋里有白球約20個,

故答案為:C.

【分析】設(shè)口袋中大約有x個白球,則』一=’,求出x的值即可。

x+103

11.【答案】-

3

12.【答案】隨機(jī)

【解析】【解答】解:小明隨意打開八下數(shù)學(xué)書,正好打開到88頁,是隨機(jī)事件.

故答案為:隨機(jī)

【分析】根據(jù)隨機(jī)事件的定義,即可得解.

13.【答案】|

2

【解析】【解答】解:由題意可得,指針落在每個扇形的概率是一樣的,故指針落在陰影區(qū)域的概率為二.

2

故答案為:—.

2

【分析】轉(zhuǎn)盤上共有5個扇形,其中陰影區(qū)域有2個扇形,故指針落在陰影區(qū)域的概率為二.

14.【答案】—

3

15.【答案】(1)-

4

⑵—

24

16.【答案】(1)被調(diào)查的總?cè)藬?shù)為4-10%=40(人),

;.C等級人數(shù)為40-(4+28+2)=6(人),

補(bǔ)全圖形如下:

(2)15;5;252°

(3)畫樹狀圖如下:

開始

甲乙丙丁

/T\/1\/1\小

乙丙丁甲丙丁甲乙丁甲乙丙

共有12種等可能的結(jié)果,甲和乙恰好分在同一組的結(jié)果有2種,

21

甲和乙恰好分在同一組的概率為二=-.

126

62

【解析】【解答】解:(2)m%=一xlOO%=15%,n%=一xlOO%=5%,

4040

28

B等級所占扇形的圓心角度數(shù)為360x—=252°.

40

故答案為:15,5,252°.

【分析】(1)利用A等級人數(shù)除以其百分比,可得被調(diào)查的總?cè)藬?shù),再分別減去其它等級人數(shù)即得C等

級人數(shù),然后補(bǔ)圖即可;

。等級人數(shù)。等級人數(shù)

(2)由m%=X100%,X100%分別計算,即得m、n值,利用360。乘以B

調(diào)查總?cè)藬?shù)“°一調(diào)查總?cè)藬?shù)

等級人數(shù)所占百分比可求出B等級所占扇形的圓心角度數(shù);

(3)利用樹狀圖列舉出共有12種等可能的結(jié)果,其中甲和乙恰好分在同一組的結(jié)果有2種,然后利用

概率公式計算即可.

17.【答案】(1)100;108°

(2)解:補(bǔ)全統(tǒng)計圖如下:

(3)解:喜歡短信溝通的人數(shù)為100x5%=5人,

喜歡用微信溝通的人數(shù)為100-20-30-5-5=40人,

40

喜歡用微信溝通的人數(shù)所占百分比為:—xl00%=40%,

1500X40%=600(A),

答:該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有600人?

(4)解:畫樹狀圖為:

微信z電話

微信QQ電話微信QQ電話微信QQ電話

共有9種等可能的結(jié)果數(shù),甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù)為3,

31

所以甲乙兩名同學(xué)恰好選中同一種溝通方式的概率-=

【解析】【解答】解:(1)這次統(tǒng)計共抽查的學(xué)生數(shù)是:20+20%=100(名),

-30

在扇形統(tǒng)計圖中,表示“微信”的扇形圓心角為:360°x——=108°.

100

故答案為:100,108°.

【分析】⑴用喜歡使用電話的人數(shù)除以它所對應(yīng)的百分比即可得到調(diào)查的總?cè)藬?shù),再用360。乘以樣本

中QQ人數(shù)所占比例即可求得QQ的扇形的圓心角度數(shù).

(2)根據(jù)(1)中的數(shù)據(jù)可補(bǔ)全條形統(tǒng)計圖.

(3)先求出喜歡用微信溝通所占百分比,再乘以該校的總?cè)藬?shù)即可求解.

(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù),然

后根據(jù)概率公式求解.

18.【答案】(1)二

3

19.【答案】(1)167;166

(2)甲組

(3)—

10

20.【答案】(1)-

4

⑵-

2

21.【答案】£1)4;2或3

6+7124

(2)解:依題意,得不一=彳,解得m=2,所以m的值為2.

【解析】【解答]解:(1)①要使袋子中全為黃球,必須摸出4個紅球,此時摸一個小球是黃球是必然事

件;

故答案為:4;

②所以當(dāng)摸出2個或3個紅球時,袋子中剩余小球沒有全部為黃球,此時摸到黃球為隨機(jī)事

件,

故答案為:2或3.

【分析】(1)①當(dāng)袋子中全部為黃球時,摸出黃球是必然事件;②當(dāng)袋子中不全部為黃球時,摸出黃球

是隨機(jī)事件;

(2)根據(jù)頻率估計概率,利用概率公式列出方程,求解即可.

22.【答案】(1)解:對于方案一,列表如下.

第二次

紅1紅2黃1黃2黃3

第一次

紅1也1,紅2)也1,黃1)(紅1,黃2)(紅1,黃3)

紅2(紅2,紅1)(紅2,黃1)也2,黃2)(紅2,黃3)

黃1(黃1,紅1)(黃1,紅2〉(黃1,黃2)(黃1,黃3)

黃2(黃2,紅1)(黃2,紅2)(黃2,黃1)(黃2,黃3)

黃3(黃3,紅1)(黃3,紅2)(黃3,黃1)(黃3,黃2)

由上表可知,共有20種等可能的結(jié)果,兩次都摸到紅球的結(jié)果數(shù)是2.

21

故采用方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論