




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南農(nóng)業(yè)大學附屬中學2025年高中新課標高三第二次雙基檢測試題數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.32.我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.3.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.4.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件5.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.的展開式中有理項有()A.項 B.項 C.項 D.項7.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣858.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.9.已知向量,且,則等于()A.4 B.3 C.2 D.110.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.11.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1012.若直線與曲線相切,則()A.3 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_____.14.設(shè)函數(shù),當時,記最大值為,則的最小值為______.15.已知函數(shù),則函數(shù)的極大值為___________.16.割圓術(shù)是估算圓周率的科學方法,由三國時期數(shù)學家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點,則該點取自其內(nèi)接正十二邊形內(nèi)部的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.18.(12分)已知函數(shù).(1)當時.①求函數(shù)在處的切線方程;②定義其中,求;(2)當時,設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.19.(12分)已知數(shù)列滿足(),數(shù)列的前項和,(),且,.(1)求數(shù)列的通項公式:(2)求數(shù)列的通項公式.(3)設(shè),記是數(shù)列的前項和,求正整數(shù),使得對于任意的均有.20.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.21.(12分)己知,,.(1)求證:;(2)若,求證:.22.(10分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學生分析問題的能力,難度較易.2、C【解析】
由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.3、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.4、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.5、B【解析】
根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎(chǔ)題.6、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.7、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.9、D【解析】
由已知結(jié)合向量垂直的坐標表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.10、D【解析】
化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.11、C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應(yīng)用能力,確定函數(shù)關(guān)于點中心對稱是解題的關(guān)鍵.12、A【解析】
設(shè)切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。14、【解析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當時,,所以單調(diào)遞減令,當時,,所以單調(diào)遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.15、【解析】
對函數(shù)求導,通過賦值,求得,再對函數(shù)單調(diào)性進行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點睛】本題考查函數(shù)極值的求解,難點是要通過賦值,求出未知量.16、【解析】
求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點取自其內(nèi)接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點E為PC中點.法二:建立如圖所示的空間直角坐標系D-XYZ,由題意知PD=CD=1,,設(shè),,,由,得,即存在點E為PC中點.(2)由(1)知,,,,,,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點睛】本題考查二面角的平面角的求法,考查直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計算能力.18、(1)①;②8079;(2).【解析】
(1)①時,,,利用導數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因為①,所以②,由①+②得,所以.所以.(2),當時,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域為.因為,,故,,①此時,當變化時、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對任意給定的,在區(qū)間上總存在兩個不同的,使得成立,當且僅當滿足下列條件,即令,,,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當時,對任意給定的,在上總存在兩個不同的,使成立.【點睛】本題考查了導數(shù)的幾何意義、應(yīng)用導數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會利用導函數(shù)的正負確定函數(shù)的單調(diào)性,會根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問題解決.19、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據(jù),求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項之間的關(guān)系,從而可求出結(jié)果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數(shù)列滿足()①;②當時,.檢驗當時,成立.所以,數(shù)列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數(shù)列時首項為1,公差為1的等差數(shù)列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數(shù)列為單調(diào)遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數(shù)列通項公式的求法、等差數(shù)列的定義及通項公式、數(shù)列的單調(diào)性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉(zhuǎn)化思想、分類討論思想.20、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門大學《建筑功能材料A》2023-2024學年第二學期期末試卷
- 五邑大學《生物檢測技術(shù)》2023-2024學年第二學期期末試卷
- 重慶對外經(jīng)貿(mào)學院《消費者行為學》2023-2024學年第二學期期末試卷
- 環(huán)保項目環(huán)境影響識別與評價考核試卷
- 碳素材料在核燃料處理中的應(yīng)用考核試卷
- 燈具配件物流與倉儲管理考核試卷
- 石油開采業(yè)的行業(yè)協(xié)會與組織合作考核試卷
- 玉米加工技術(shù)創(chuàng)新與知識產(chǎn)權(quán)保護考核試卷
- 智能驅(qū)蚊手環(huán)驅(qū)蚊效果考核試卷
- 林業(yè)副產(chǎn)品在化學品制造中的應(yīng)用考核試卷
- 2025年健康管理師考試信息整合試題及答案
- 矮小癥的護理措施
- 2024年襄陽市樊城區(qū)城市更新投資發(fā)展有限公司招聘筆試真題
- 2025年中國酸奶飲品行業(yè)市場深度評估及投資戰(zhàn)略規(guī)劃報告
- 新增值稅法的變化要點與實務(wù)要領(lǐng)
- 2025年浙江省建筑安全員-A證考試題庫及答案
- 2024年電子商務(wù)物流挑戰(zhàn)試題及答案
- 2025年高考英語二輪復習專題05 閱讀七選五(練習)(解析版)
- 門式架搭設(shè)方案
- 無人機導航與通信技術(shù)PPT完整全套教學課件
- 成都市家庭裝飾裝修工程施工合同范本(工商局監(jiān)制建委編制)
評論
0/150
提交評論