江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題_第1頁
江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題_第2頁
江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題_第3頁
江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題_第4頁
江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省啟東市長江中學(xué)2025屆高三適應(yīng)性練習(xí)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.2.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.3.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.7.已知i是虛數(shù)單位,則1+iiA.-12+32i8.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件9.已知,,由程序框圖輸出的為()A.1 B.0 C. D.10.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.11.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.12.已知,則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_________.14.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,所對的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點,已知,,求的值.18.(12分)一張邊長為的正方形薄鋁板(圖甲),點,分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點,制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計)(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.19.(12分)已知.(Ⅰ)當(dāng)時,解不等式;(Ⅱ)若的最小值為1,求的最小值.20.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.21.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.22.(10分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.2、C【解析】

求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.3、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.4、D【解析】

由題意利用兩個向量坐標(biāo)形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標(biāo)形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.5、A【解析】

根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當(dāng)"a=b當(dāng)logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.6、C【解析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.7、D【解析】

利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D【點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。8、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題9、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.10、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學(xué)生對這些知識的理解掌握水平.11、C【解析】

根據(jù)題意,知當(dāng)時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當(dāng)時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.12、A【解析】

構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關(guān)于原點對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.14、答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎(chǔ)題.15、80211【解析】

由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應(yīng)用,屬于中檔題.16、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;.【解析】

利用正弦定理化簡求值即可;利用兩角和差的正弦函數(shù)的化簡公式,結(jié)合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內(nèi)角,故,,則,故,;(2)平分,設(shè),則,,,,則,,又,則在中,由正弦定理:,.【點睛】本題考查正弦定理和兩角和差的正弦函數(shù)的化簡公式,二倍角公式,考查運算能力,屬于基礎(chǔ)題.18、(1),;(2)當(dāng)值為時,無蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時,,當(dāng),時,,當(dāng)時,有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時,取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時,無蓋三棱錐容器的容積最大.【點睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)當(dāng)時,令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標(biāo)為2,由對稱性知,點橫坐標(biāo)為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯(lián)立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題20、(Ⅰ).(Ⅱ).【解析】

詳解:(Ⅰ)當(dāng)時,由,解得;當(dāng)時,不成立;當(dāng)時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.21、(1);(2)4【解析】

(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時不等式可化為當(dāng)時,不等式可化為;當(dāng)時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,即時等號成立∴,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.22、(1)答案見解析.(2)【解析】

(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標(biāo)系,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論