




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉化第一高級(jí)中學(xué)第二學(xué)期期末高三數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列四個(gè)結(jié)論中正確的個(gè)數(shù)是(1)對(duì)于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.42.已知,則下列說(shuō)法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題3.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.104.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.35.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.6.“中國(guó)剩余定理”又稱“孫子定理”,最早可見(jiàn)于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問(wèn)物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問(wèn)題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612427.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-28.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對(duì)2019年這一年的收支情況,下列說(shuō)法中錯(cuò)誤的是()A.月收入的極差為60 B.7月份的利潤(rùn)最大C.這12個(gè)月利潤(rùn)的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤(rùn)超過(guò)400萬(wàn)元9.體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.610.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.9011.已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為()A.1 B.或0 C.1或0 D.2或012.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.16二、填空題:本題共4小題,每小題5分,共20分。13.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號(hào)是_____.14.如圖,在直四棱柱中,底面是平行四邊形,點(diǎn)是棱的中點(diǎn),點(diǎn)是棱靠近的三等分點(diǎn),且三棱錐的體積為2,則四棱柱的體積為_(kāi)_____.15.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.16.已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn),且,tan∠PF2F1=﹣2,則雙曲線的離心率為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.18.(12分)某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買(mǎi)每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過(guò)元,求的最小值.19.(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請(qǐng)寫(xiě)出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說(shuō)明理由;(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.20.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動(dòng)直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過(guò)Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長(zhǎng)度最小時(shí),求s的值.21.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,若(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)在和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:.22.(10分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯(cuò)誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對(duì)稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時(shí),可得成立,當(dāng)時(shí),只需滿足,所以“”是“”成立的充分不必要條件.【點(diǎn)睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識(shí)點(diǎn)的應(yīng)用,逐項(xiàng)判定是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.2.D【解析】
舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時(shí),故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對(duì)函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.3.C【解析】
畫(huà)出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱,計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫(huà)出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱,圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱是解題的關(guān)鍵.4.D【解析】
轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問(wèn)題,屬于基礎(chǔ)題.5.A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.6.C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。7.B【解析】
通過(guò)復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.8.D【解析】
直接根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由圖可知月收入的極差為,故選項(xiàng)A正確;1至12月份的利潤(rùn)分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤(rùn)最高,故選項(xiàng)B正確;易求得總利潤(rùn)為380萬(wàn)元,眾數(shù)為30,中位數(shù)為30,故選項(xiàng)C正確,選項(xiàng)D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.9.B【解析】
通過(guò)列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過(guò)列舉的方法直觀感受,屬于基礎(chǔ)題.10.A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.11.C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個(gè)零點(diǎn),∴的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.12.D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡(jiǎn)即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡(jiǎn)求值中的應(yīng)用,屬于中檔試題.14.12【解析】
由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c(diǎn)睛】本題主要考查了棱柱與棱錐的體積的計(jì)算問(wèn)題,其中解答中正確認(rèn)識(shí)幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,以及空間想象能力,屬于中檔試題。15.【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.16.【解析】
根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計(jì)算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因?yàn)椋?,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一般.18.;.【解析】
設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡(jiǎn)得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,所以;由題意可知,隨機(jī)變量的可能取值為,,,且,,,所以隨機(jī)變量的數(shù)學(xué)期望,,化簡(jiǎn)得,由題意可知,,即,化簡(jiǎn)得,因?yàn)椋獾?,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于??碱}.19.(Ⅰ)答案見(jiàn)解析;(Ⅱ)不存在,理由見(jiàn)解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過(guò)分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)?,,所以,?..,,,,...,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個(gè)數(shù),由③知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對(duì)數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點(diǎn)睛】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.20.(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川衛(wèi)生康復(fù)職業(yè)學(xué)院《統(tǒng)計(jì)計(jì)算與應(yīng)用軟件》2023-2024學(xué)年第二學(xué)期期末試卷
- 玉溪職業(yè)技術(shù)學(xué)院《材料科學(xué)基礎(chǔ)(Ⅰ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安美術(shù)學(xué)院《民航服務(wù)英語(yǔ)(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶城市職業(yè)學(xué)院《數(shù)據(jù)模型與決策》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧體育運(yùn)動(dòng)職業(yè)技術(shù)學(xué)院《中醫(yī)臨床》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶化工職業(yè)學(xué)院《工具書(shū)與文獻(xiàn)檢索》2023-2024學(xué)年第二學(xué)期期末試卷
- 信息技術(shù)員勞動(dòng)合同
- 廠家廠房承包合同
- 賓館經(jīng)營(yíng)權(quán)承包合同
- 養(yǎng)殖產(chǎn)銷買(mǎi)賣合同協(xié)議書(shū)
- DB11∕T1481-2024生產(chǎn)經(jīng)營(yíng)單位生產(chǎn)安全事故應(yīng)急預(yù)案評(píng)審規(guī)范
- LY/T 2762-2024黃精
- 肥胖中醫(yī)養(yǎng)生知識(shí)講座
- 2025年部編版新教材語(yǔ)文一年級(jí)下冊(cè)期中測(cè)試題(有答案)
- 乳腺癌的篩查
- 《FAB銷售法則》課件
- 衛(wèi)生院、社區(qū)衛(wèi)生服務(wù)中心《死亡醫(yī)學(xué)證明書(shū)》上報(bào)制度
- 大學(xué)兼職申請(qǐng)書(shū)
- 狂犬疫苗打完免責(zé)協(xié)議書(shū)(2篇)
- 游樂(lè)設(shè)備事故應(yīng)急預(yù)案
- 2025年杭州大有供電服務(wù)有限公司招聘筆試參考題庫(kù)含答案解析
評(píng)論
0/150
提交評(píng)論