四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題_第1頁
四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題_第2頁
四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題_第3頁
四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題_第4頁
四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省樂山一中2025年高三1月聯(lián)合考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.632.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.3.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.4.設(shè)雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.5.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.726.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1287.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.8.設(shè),是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.9.已知,若,則等于()A.3 B.4 C.5 D.610.函數(shù)的大致圖象為A. B.C. D.11.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件12.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面區(qū)域的外接圓的方程是____________.14.若函數(shù)為偶函數(shù),則________.15.請列舉用0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.16.在中,角的平分線交于,,,則面積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,18.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.19.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.20.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(ⅰ)對任意的;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.21.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.22.(10分)設(shè)為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.2.C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.3.D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.4.A【解析】

由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.5.C【解析】

由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應(yīng)用,屬于基礎(chǔ)題.6.C【解析】

根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7.A【解析】

根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.8.C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.9.C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎(chǔ)題目.10.A【解析】

因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.11.D【解析】

根據(jù)正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,考查理解辨析能力與運算求解能力,屬于基礎(chǔ)題.12.C【解析】

設(shè)公差為,則由題意可得,解得,可得.令

,可得

當時,,當時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,

則,解得

,.

,可得,故當時,,當時,,

故數(shù)列前項和中最小的是.故選:C.【點睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標,設(shè)三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運算求解能力,屬于中等題.14.【解析】

二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題15.231,321,301,1【解析】

分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當個位數(shù)字是3時數(shù)字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.16.15【解析】

由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設(shè),則由余弦定理得:即當且僅當,即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見證明【解析】

(1)由題意將遞推關(guān)系式整理為關(guān)于與的關(guān)系式,求得前n項和然后確定通項公式即可;(2)由題意結(jié)合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關(guān)系,求an,常用思路是:一是利用轉(zhuǎn)化為an的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.18.(1)見解析(2)【解析】

(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.19.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點作的垂線,如圖建立空間直角坐標系,不妨設(shè),則,故點,;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.20.(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當,,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項為,公差為的等差數(shù)列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數(shù)列;同理可得以為首項、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論