




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
國家《概率論與數(shù)理統(tǒng)計》形考任務1-4答案形考作業(yè)1(一)填空題(每小題10分,共50分)已知P(A)=0.3,P(B)=0.5,則當事件A,B互不相容時,P(A+B)=(0.8)。A,B為兩個隨機事件,且B?A,則P(A+B)=(P(A))。從數(shù)字1,2,3,4,5中任取3個,組成沒有重復數(shù)字的三位數(shù),則這個三位數(shù)是偶數(shù)的概率為(五分之二)。設A和B獨立,若已知P(A∪B)=0.6,P(A)=0.4,則P(B)=(三分之一)。擲一枚骰子,出現(xiàn)1點或6點的概率是(三分之一)。(二)單項選擇題(每小題10分,共50分)A,B為任意兩個事件,則(B)成立。(A)(A+B)?B=A(B)(A+B)?B?A(C)(A?B)∪B=A(D)(A?B)∪B?A袋中有5個黑球,3個白球,一次隨機地摸出4個球,其中恰有3個白球的概率為(A)。(A)C84?5?(B)(83?)581?(C)C43?(83?)381?(D)3/810張獎券中含有3張中獎的獎券,每人購買1張,則前3個購買者中恰有一個人中獎的概率為(D)。(A)C103?×0.72×0.3(B)0.3(C)7/40(D)21/40如果(C)成立,則事件A與B互為對立事件。(A)AB=?(B)A+B=U(C)AB=?且A+B=U(D)A與B補互為對立事件五個身高不同的人,隨機站成一排,如果按身高順序排列的概率是(B)。(A)1/5(B)1/120(C)1/60(D)2/5
形考作業(yè)2一、填空題(每小題10分,共50分)若X~B(20,0.3),則E(X)=(6)。若二維隨機變量(X,Y)的相關系數(shù)ρXY?=0,則稱X,Y(不相關)。設隨機變量X~U(0,1),則X的分布函數(shù)為F(x)=已知連續(xù)型隨機變量X的分布函數(shù)為F(x),且密度函數(shù)f(x)連續(xù),則f(x)=(F′(x))。若X~N(μ,σ2),則P{∣X?μ∣≤3σ}=(0.9974)。二、單項選擇題(每小題10分,共50分)設隨機變量X~B(n,p),且E(X)=4.8,D(X)=0.96,則參數(shù)分別是(B)。(A)6,0.8(B)8,0.6(C)12,0.4(D)14,0.2設連續(xù)型隨機變量X的密度函數(shù)是f(x),分布函數(shù)是F(x),則對任給的區(qū)間(a,b),則P{a<X<b}=(D)。(A)F(a)?F(b)(B)∫ab?F(x)dx(C)f(a)?f(b)(D)∫ab?f(x)dx設X為隨機變量,則D(2X?3)=(D)。(A)2D(X)+3(B)2D(X)(C)2D(X)?3(D)4D(X)設兩個相互獨立的隨機變量X和Y的方差分別為4和2,則隨機變量3X?2Y的方差是(D)。(A)8(B)16(C)28(D)44對任意兩個隨機變量X和Y,若E(XY)=E(X)?E(Y),則(B)。(A)D(XY)=D(X)?D(Y)(B)D(X+Y)=D(X)+D(Y)(C)X與Y獨立(D)X與Y不獨立
形考作業(yè)3一、填空題(每小題10分,共50分)統(tǒng)計量就是(不含未知參數(shù)的樣本函數(shù))。統(tǒng)計量的分布又稱為(抽樣分布)。當自變量和因變量都是一個時,稱為(一元回歸分析)。假設檢驗中的顯著性水平σ為(原假設為真時拒絕原假設的概率)。比較估計量好壞的兩個重要標準是無偏性和(有效性)。二、單項選擇題(每小題10分,共50分)假設檢驗時,若增大樣本容量,,則犯兩類錯誤的概率()。(A)都增大(B)都減小(C)都不變(D)一個增大,另一個減少答案:(B)設x1?,x2?,?,xn?是來自正態(tài)總體N(μ,σ2)(μ,σ2均未知)的樣本,則()是統(tǒng)計量。(A)x1?(B)xˉ+μ(C)σ2x12??(D)μx1?答案:(A)設總體X的均值μ與方差σ2都存在,且均為未知參數(shù),而x1?,x2?,?,xn?是該總體的一個樣本,記Xˉ=n1?∑i=1n?xi?,則總體方差σ2的矩估計為()。(A)Xˉ(B)n1?∑i=1n?(xi??Xˉ)2(C)n1?∑i=1n?(xi??μ)2(D)n1?∑i=1n?xi2?答案:(B)設x1?,x2?是來自正態(tài)總體N(μ,1)的容量為2的樣本,其中μ為未知參數(shù),下面關于μ的估計兩種,只有()才是μ的無偏估計。(A)32?x1?+34?x2?(B)41?x1?+42?x2?(C)43?x1??41?x2?(D)52?x1?+53?x2?答案:(D)下列統(tǒng)計處理中屬于推斷統(tǒng)計的是()。(A)計算一組數(shù)據(jù)的算術平均數(shù)測度集中趨勢(B)對回歸模型進行假設檢驗(C)利用折線圖展示價格走勢(D)利用直方圖展示一組數(shù)據(jù)的頻數(shù)分布答案:(B)
形考作業(yè)4一、計算題(每小題50分,共100分)已知10個產(chǎn)品中有7個正品,3個次品,每次從中任取1個,不放回地取3次,求取到2個正品1個次品的概率。答案:步驟一:計算從7個正品中選2個的組合數(shù)根據(jù)組合數(shù)公式Cnm?=m!(n?m)!n!?,這里n=7,m=2,則C72?=2!(7?2)!7!?=2×1×5!7×6×5!?=21。步驟二:計算從3個次品中選1個的組合數(shù)同樣根據(jù)組合數(shù)公式,n=3,m=1,C31?=1!(3?1)!3!?=1×2!3×2!?=3。步驟三:根據(jù)分步乘法計數(shù)原理,計算取到2個正品1個次品的總情況數(shù)因為完成取2個正品和取1個次品這兩個步驟是相互獨立的,所以總情況數(shù)為C72?×C31?=21×3=63。步驟四:計算從10個產(chǎn)品中不放回地取3個的總情況數(shù)n=10,m=3,C103?=3!(10?3)!10!?=3×2×1×7!10×9×8×7!?=120。步驟五:計算取到2個正品1個次品的概率根據(jù)古典概型概率公式事件發(fā)生的情況數(shù)總情況數(shù),可得P=C103?C72?×C31??=12063?=4021?。設隨機變量X的分布列是P{X=1}=p,P{X=0}=q,(p+q=1)求D(X)答案:步驟一:計算E(X)(數(shù)學期望)根據(jù)數(shù)學期望的定義E(X)=∑i?xi?P(X=xi?),這里x1?=1,P(X=1)=p,x2?=0,P(X=0)=q,則E(X)=1×P(X=1)+0×P(X=0)=1×p+0×q=p。步驟二:計算E(X2)同樣根據(jù)數(shù)學期望的定義E(X2)=∑i?xi2?P(X=xi?),x12?=12=1,P(X=1)=p,x22?=02=0,P(X
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石阡縣2024-2025學年四年級數(shù)學第二學期期末教學質量檢測模擬試題含解析
- 購銷分期付款設備合作合同
- 道路運輸合同范本
- 浙江省臺州市溫嶺市箬橫鎮(zhèn)東浦中學2025年高一下學期綜合檢測試題物理試題含解析
- 2025二手車消費貸款合同模板
- 人力資源發(fā)展與培訓合同
- 人力資源培訓外包合同2025
- 七里河區(qū)合同管理制度完善與發(fā)展
- 線上眾籌股權轉讓合同
- 上海市二手房交易居間合同2025
- 2025榆林能源集團有限公司招聘工作人員(473人)筆試參考題庫附帶答案詳解
- 銀行等安全保衛(wèi)現(xiàn)場檢查要點清單
- 活動場地租賃與活動安全責任協(xié)議
- 《數(shù)據(jù)統(tǒng)計與分析》課件
- 2024年河南職業(yè)技術學院單招職業(yè)適應性考試題庫必考題
- (二模)新疆維吾爾自治區(qū)2025年普通高考第二次適應性檢測 英語試卷(含答案詳解)
- 征信系統(tǒng)AI應用行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 書法藝術療愈在書法教育中的實踐與應用研究
- 射頻電路封裝設計與工藝實現(xiàn)方法研究
- 2025年中國航天日知識競賽考試題庫300題(含答案)
- T-JSQX 0016-2024 無人駕駛配送裝備通.用技術要求
評論
0/150
提交評論