高等數(shù)學(xué)基礎(chǔ)階段復(fù)習(xí)計劃須周密可行_第1頁
高等數(shù)學(xué)基礎(chǔ)階段復(fù)習(xí)計劃須周密可行_第2頁
高等數(shù)學(xué)基礎(chǔ)階段復(fù)習(xí)計劃須周密可行_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高等數(shù)學(xué)基礎(chǔ)階段:復(fù)習(xí)計劃須周密可行萬丈高樓平地起,學(xué)習(xí)亦是如此??v觀2015年研究生入學(xué)考試題目竟然高達(dá)90%的題目都是基礎(chǔ)題,可以說只要掌握基礎(chǔ)的解題技巧、解題方法,今年的考試拿到120分應(yīng)該不成問題?,F(xiàn)在大部分考生都是在校生,所以這個寒假也是一個前期復(fù)習(xí)的最佳時機(jī)。同時,很多同學(xué)對現(xiàn)在基礎(chǔ)階段數(shù)學(xué)該如何復(fù)習(xí),高數(shù)該從哪里入手學(xué)習(xí)之類的問題較為迷茫,老師認(rèn)為,在基礎(chǔ)階段的復(fù)習(xí)中,不管哪一科,唯一的目標(biāo)就是打牢基礎(chǔ),關(guān)于高等數(shù)學(xué)復(fù)習(xí)給同學(xué)們以下參考意見。一、考研高等數(shù)學(xué)復(fù)習(xí)計劃及資料選擇高等數(shù)學(xué)這門課在數(shù)學(xué)一和數(shù)學(xué)三中占56%,在數(shù)學(xué)二中比例高達(dá)78%,因此高數(shù)在考研中的重要性是不言而喻。那么一本靠譜的基礎(chǔ)階段復(fù)習(xí)資料就是很重要的。首先,高等教育出版社的《數(shù)學(xué)考試大綱》或者《大綱解析》是必要的。因為考生必須要明確目標(biāo),包括考試的范圍,考試的難度,這樣才能做到有的放矢。其次,就是高數(shù)的復(fù)習(xí)資料。在本階段,我們只需要準(zhǔn)備一套高等數(shù)學(xué)的教材及習(xí)題解答即可。這個教材普遍使用的是同濟(jì)六版的《高等數(shù)學(xué)》,此書定理證明,例題思路都非常清楚,而且課后習(xí)題也很有層次,有些是可以經(jīng)過改動直接放到考試真題中的。因為高數(shù)的難度以及繁多的內(nèi)容,要求我們數(shù)學(xué)備考一定要有一個復(fù)習(xí)時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進(jìn),切忌搞突擊,臨時抱佛腳。以下是對高等數(shù)學(xué)的復(fù)習(xí)計劃。第一章函數(shù)與極限(10天)微積分中研究的對象是函數(shù)。函數(shù)概念的實(shí)質(zhì)是變量之間確定的對應(yīng)關(guān)系。極限是微積分的理論基礎(chǔ),研究函數(shù)實(shí)質(zhì)上是研究各種類型極限。無窮小就是極限為零的變量,極限方法的重要部分是無窮小分析,或說無窮小階的估計與分析。我們研究的對象是連續(xù)函數(shù)或除若干點(diǎn)外是連續(xù)的函數(shù)。第二章:導(dǎo)數(shù)與微分(7天)一元函數(shù)的導(dǎo)數(shù)是一類特殊的函數(shù)極限,在幾何上函數(shù)的導(dǎo)數(shù)即曲線的切線的斜率,在力學(xué)上路程函數(shù)的導(dǎo)數(shù)就是速度,導(dǎo)數(shù)有鮮明的力學(xué)意義和幾何意義以及物理意義。函數(shù)的可微性是函數(shù)增量和自變量增量之間關(guān)系的另一種表達(dá)形式。函數(shù)微分是函數(shù)增量的線性主要部分。第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用(8天)連續(xù)函數(shù)是我們研究的基本對象,函數(shù)的許多其他性質(zhì)都和連續(xù)性有關(guān)。在理解有關(guān)定理的基礎(chǔ)上可以利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性、凹凸性和求極值、拐點(diǎn),并體現(xiàn)在作圖上。微分學(xué)的另一個重要應(yīng)用是求函數(shù)的最大值和最小值。第四章:不定積分(7天)積分學(xué)是微積分的主要部分之一。函數(shù)積分學(xué)包括不定積分和定積分兩部分。在積分的計算中,分項積分法,分段積分法,換元積分法和分部積分法是最基本的方法。第五章:定積分(8天)定積分是微積分七大積分的基礎(chǔ),要理解微元法,理解以“以常代變”的這種思想。定積分的計算公式“牛頓-萊布尼茲”是我們微積分的核心,要會證明。第六章:定積分的應(yīng)用(5天),定積分的幾何應(yīng)用,是所有同學(xué)都需掌握的;物理應(yīng)用數(shù)三的同學(xué)不需掌握。第七章:空間解析幾何(3天)本章主要理解向量之間的關(guān)系,會寫平面、直線、二次曲面的方程,為后面重積分做準(zhǔn)備。第八章:多元函數(shù)微分法及其應(yīng)用(7天)在一元函數(shù)微分學(xué)的基礎(chǔ)上,討論多元函數(shù)的微分法及其應(yīng)用,主要是二元函數(shù)的偏導(dǎo)數(shù)、全微分等概念,掌握計算不同函數(shù)的各種方法及應(yīng)用中的會求條件或無條件極值。第九章:重積分(7天)在一元函數(shù)積分學(xué)中,定積分是某種確定形式的和的極限,這種和的極限的概念推廣到定義在區(qū)域、曲線及曲面上多元函數(shù)的情形,便得到重積分、曲線積分及曲面積分的概念,本章主要介紹重積分(包括曲線曲面積分)的概念、計算方法以及它們的一些應(yīng)用,重點(diǎn)是會計算。第十一章:無窮級數(shù)(7天)這一部分和之前的知識聯(lián)系不那么緊密,是從思維方式上的一個改變。本章學(xué)習(xí)的時候一定要分類總結(jié),對于數(shù)項級數(shù),分清不同的級數(shù)適用的判定方法;對于函數(shù)項級數(shù),會求和函數(shù)、收斂域。第十二章常微分方程(9天)常微分方程的研究對象就是常微分方程解的性質(zhì)與求法,本章主要有兩個問題,一是根據(jù)實(shí)際問題和所給條件建立含有自變量、未

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論