數(shù)據(jù)挖掘考試習(xí)題匯總_第1頁
數(shù)據(jù)挖掘考試習(xí)題匯總_第2頁
數(shù)據(jù)挖掘考試習(xí)題匯總_第3頁
數(shù)據(jù)挖掘考試習(xí)題匯總_第4頁
數(shù)據(jù)挖掘考試習(xí)題匯總_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第一章1、數(shù)據(jù)倉庫就是一個(gè)面向主題的、集成的、相對(duì)穩(wěn)定的、反映歷史變化的數(shù)據(jù)集合。2、元數(shù)據(jù)是描述數(shù)據(jù)倉庫內(nèi)數(shù)據(jù)的結(jié)構(gòu)和建立方法的數(shù)據(jù),它為訪問數(shù)據(jù)倉庫提供了一個(gè)信息目錄,根據(jù)數(shù)據(jù)用途的不同可將數(shù)據(jù)倉庫的元數(shù)據(jù)分為技術(shù)元數(shù)據(jù)和業(yè)務(wù)元數(shù)據(jù)兩類。3、數(shù)據(jù)處理通常分成兩大類:聯(lián)機(jī)事務(wù)處理和聯(lián)機(jī)分析處理。4、多維分析是指以“維”形式組織起來的數(shù)據(jù)(多維數(shù)據(jù)集)采取切片、切塊、鉆取和旋轉(zhuǎn)等各種分析動(dòng)作,以求剖析數(shù)據(jù),使擁護(hù)能從不同角度、不同側(cè)面觀察數(shù)據(jù)倉庫中的數(shù)據(jù),從而深入理解多維數(shù)據(jù)集中的信息。5、ROLAP是基于關(guān)系數(shù)據(jù)庫的OLAP實(shí)現(xiàn),而MOLAP是基于多維數(shù)據(jù)結(jié)構(gòu)組織的OLAP實(shí)現(xiàn)。6、數(shù)據(jù)倉庫

2、按照其開發(fā)過程,其關(guān)鍵環(huán)節(jié)包括數(shù)據(jù)抽取、數(shù)據(jù)存儲(chǔ)與管理和數(shù)據(jù)表現(xiàn)等。7、數(shù)據(jù)倉庫系統(tǒng)的體系結(jié)構(gòu)根據(jù)應(yīng)用需求的不同,可以分為以下4種類型:兩層架構(gòu)、獨(dú)立型數(shù)據(jù)集合、以來型數(shù)據(jù)結(jié)合和操作型數(shù)據(jù)存儲(chǔ)和邏輯型數(shù)據(jù)集中和實(shí)時(shí)數(shù)據(jù)倉庫。8、操作型數(shù)據(jù)存儲(chǔ)實(shí)際上是一個(gè)集成的、面向主題的、可更新的、當(dāng)前值的(但是可“揮發(fā)”的)、企業(yè)級(jí)的、詳細(xì)的數(shù)據(jù)庫,也叫運(yùn)營數(shù)據(jù)存儲(chǔ)。9、“實(shí)時(shí)數(shù)據(jù)倉庫”以為著源數(shù)據(jù)系統(tǒng)、決策支持服務(wù)和倉庫倉庫之間以一個(gè)接近實(shí)時(shí)的速度交換數(shù)據(jù)和業(yè)務(wù)規(guī)則。10、從應(yīng)用的角度看,數(shù)據(jù)倉庫的發(fā)展演變可以歸納為5個(gè)階段:以報(bào)表為主、以分析為主、以預(yù)測(cè)模型為主、以運(yùn)營導(dǎo)向?yàn)橹骱鸵詫?shí)時(shí)數(shù)據(jù)倉庫和自動(dòng)決策

3、為主。第二章1、調(diào)和數(shù)據(jù)是存儲(chǔ)在企業(yè)級(jí)數(shù)據(jù)倉庫和操作型數(shù)據(jù)存儲(chǔ)中的數(shù)據(jù)。2、抽取、轉(zhuǎn)換、加載過程的目的是為決策支持應(yīng)用提供一個(gè)單一的、權(quán)威數(shù)據(jù)源。因此,我們要求ETL過程產(chǎn)生的數(shù)據(jù)(即調(diào)和數(shù)據(jù)層)是詳細(xì)的、歷史的、規(guī)范的、可理解的、即時(shí)的和質(zhì)量可控制的。3、數(shù)據(jù)抽取的兩個(gè)常見類型是靜態(tài)抽取和增量抽取。靜態(tài)抽取用于最初填充數(shù)據(jù)倉庫,增量抽取用于進(jìn)行數(shù)據(jù)倉庫的維護(hù)。4、粒度是對(duì)數(shù)據(jù)倉庫中數(shù)據(jù)的綜合程度高低的一個(gè)衡量。粒度越小,細(xì)節(jié)程度越高,綜合程度越低,回答查詢的種類越多。5、使用星型模式可以從一定程度上提高查詢效率。因?yàn)樾切湍J街袛?shù)據(jù)的組織已經(jīng)經(jīng)過預(yù)處理,主要數(shù)據(jù)都在龐大的事實(shí)表中。6、維度表一

4、般又主鍵、分類層次和描述屬性組成。對(duì)于主鍵可以選擇兩種方式:一種是采用自然鍵,另一種是采用代理鍵。7、雪花型模式是對(duì)星型模式維表的進(jìn)一步層次化和規(guī)范化來消除冗余的數(shù)據(jù)。8、數(shù)據(jù)倉庫中存在不同綜合級(jí)別的數(shù)據(jù)。一般把數(shù)據(jù)分成4個(gè)級(jí)別:早期細(xì)節(jié)級(jí)、當(dāng)前細(xì)節(jié)級(jí)、輕度綜合級(jí)和高度綜合級(jí)。第三章1、SQL Server SSAS提供了所有業(yè)務(wù)數(shù)據(jù)的同意整合試圖,可以作為傳統(tǒng)報(bào)表、在線分析處理、關(guān)鍵性能指示器記分卡和數(shù)據(jù)挖掘的基礎(chǔ)。2、數(shù)據(jù)倉庫的概念模型通常采用信息包圖法來進(jìn)行設(shè)計(jì),要求將其5個(gè)組成部分(包括名稱、維度、類別、層次和度量)全面地描述出來。3、數(shù)據(jù)倉庫的邏輯模型通常采用星型圖法來進(jìn)行設(shè)計(jì),要求

5、將星型的各類邏輯實(shí)體完整地描述出來。4、按照事實(shí)表中度量的可加性情況,可以把事實(shí)表對(duì)應(yīng)的事實(shí)分為4種類型:事務(wù)事實(shí)、快照事實(shí)、線性項(xiàng)目事實(shí)和事件事實(shí)。5、確定了數(shù)據(jù)倉庫的粒度模型以后,為提高數(shù)據(jù)倉庫的使用性能,還需要根據(jù)擁護(hù)需求設(shè)計(jì)聚合模型。6、在項(xiàng)目實(shí)施時(shí),根據(jù)事實(shí)表的特點(diǎn)和擁護(hù)的查詢需求,可以選用時(shí)間、業(yè)務(wù)類型、區(qū)域和下屬組織等多種數(shù)據(jù)分割類型。7、當(dāng)維表中的主鍵在事實(shí)表中沒有與外鍵關(guān)聯(lián)時(shí),這樣的維稱為退化維。它于事實(shí)表并無關(guān)系,但有時(shí)在查詢限制條件(如訂單號(hào)碼、出貨單編號(hào)等)中需要用到。8、維度可以根據(jù)其變化快慢分為元變化維度、緩慢變化維度和劇烈變化維度三類。9、數(shù)據(jù)倉庫的數(shù)據(jù)量通常較大

6、,且數(shù)據(jù)一般很少更新,可以通過設(shè)計(jì)和優(yōu)化索引結(jié)構(gòu)來提高數(shù)據(jù)存取性能。10、數(shù)據(jù)倉庫數(shù)據(jù)庫常見的存儲(chǔ)優(yōu)化方法包括表的歸并與簇文件、反向規(guī)范化引入冗余、表的物理分割(分區(qū))。第四章1、關(guān)聯(lián)規(guī)則的經(jīng)典算法包括Apriori算法和FP-growth算法,其中FP-grownth算法的效率更高。2、如果L2=a,b,a,c,a,d,b,c,b,d,則連接產(chǎn)生的C3=a,b,c,a,b,d,a,c,d,b,c,d再經(jīng)過修剪,C3=a,b,c,a,b,d3、設(shè)定supmin=50%,交易集如則L1=A,B,C L2=A,CT1 A B CT2 A CT3 A D T4 B E F第五章1、分類的過程包括獲取

7、數(shù)據(jù)、預(yù)處理、分類器設(shè)計(jì)和分類決策。2、分類器設(shè)計(jì)階段包含三個(gè)過程:劃分?jǐn)?shù)據(jù)集、分類器構(gòu)造和分類器測(cè)試。3、分類問題中常用的評(píng)價(jià)準(zhǔn)則有精確度、查全率和查準(zhǔn)率和集合均值。4、支持向量機(jī)中常用的核函數(shù)有多項(xiàng)式核函數(shù)、徑向基核函數(shù)和S型核函數(shù)。第六章1、聚類分析包括連續(xù)型、二值離散型、多值離散型和混合類型4種類型描述屬性的相似度計(jì)算方法。2、連續(xù)型屬性的數(shù)據(jù)樣本之間的距離有歐氏距離、曼哈頓距離和明考斯基距離。3、劃分聚類方法對(duì)數(shù)據(jù)集進(jìn)行聚類時(shí)包含三個(gè)要點(diǎn):選種某種距離作為數(shù)據(jù)樣本減的相似性度量、選擇評(píng)價(jià)聚類性能的準(zhǔn)則函數(shù)和選擇某個(gè)初始分類,之后用迭代的方法得到聚類結(jié)果,使得評(píng)價(jià)聚類的準(zhǔn)則函數(shù)取得最優(yōu)

8、值。4、層次聚類方法包括凝聚型和分解型兩中層次聚類方法。填空題20分,簡(jiǎn)答題25分,計(jì)算題2個(gè)(25分),綜合題30分1、數(shù)據(jù)倉庫的組成?P2數(shù)據(jù)倉庫數(shù)據(jù)庫,數(shù)據(jù)抽取工具,元數(shù)據(jù),訪問工具,數(shù)據(jù)集市,數(shù)據(jù)倉庫管理,信息發(fā)布系統(tǒng)2、數(shù)據(jù)挖掘技術(shù)對(duì)聚類分析的要求有哪幾個(gè)方面?P131可伸縮性;處理不同類型屬性的能力;發(fā)現(xiàn)任意形狀聚類的能力;減小對(duì)先驗(yàn)知識(shí)和用戶自定義參數(shù)的依賴性;處理噪聲數(shù)據(jù)的能力;可解釋性和實(shí)用性3、數(shù)據(jù)倉庫在存儲(chǔ)和管理方面的特點(diǎn)與關(guān)鍵技術(shù)?P7數(shù)據(jù)倉庫面對(duì)的是大量數(shù)據(jù)的存儲(chǔ)與管理并行處理針對(duì)決策支持查詢的優(yōu)化支持多維分析的查詢模式4、常見的聚類算法可以分為幾類?P132基于劃分

9、的聚類算法,基于層次的聚類算法,基于密度的聚類算法,基于網(wǎng)格的聚類算法,基于模型的聚類算法 等。5、一個(gè)典型的數(shù)據(jù)倉庫系統(tǒng)的組成?P12數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)與管理、OLAP服務(wù)器、前端工具與應(yīng)用6、 數(shù)據(jù)倉庫常見的存儲(chǔ)優(yōu)化方法?P71表的歸并與簇文件;反向規(guī)范化,引入冗余;表的物理分割。7、 數(shù)據(jù)倉庫發(fā)展演變的5個(gè)階段?P20以報(bào)表為主以分析為主以預(yù)測(cè)模型為主以運(yùn)行向?qū)橹饕詫?shí)時(shí)數(shù)據(jù)倉庫、自動(dòng)決策應(yīng)用為主8、 ID3算法主要存在的缺點(diǎn)?P116(1)ID3算法在選擇根結(jié)點(diǎn)和各內(nèi)部結(jié)點(diǎn)中的分枝屬性時(shí),使用信息增益作為評(píng)價(jià)標(biāo)準(zhǔn)。信息增益的缺點(diǎn)是傾向于選擇取值較多的屬性,在有些情況下這類屬性可能不會(huì)提供

10、太多有價(jià)值的信息。(2)ID3算法只能對(duì)描述屬性為離散型屬性的數(shù)據(jù)集構(gòu)造決策樹。9、 簡(jiǎn)述數(shù)據(jù)倉庫ETL軟件的主要功能和對(duì)產(chǎn)生數(shù)據(jù)的目標(biāo)要求。P30ETL軟件的主要功能:數(shù)據(jù)的抽取,數(shù)據(jù)的轉(zhuǎn)換,數(shù)據(jù)的加載對(duì)產(chǎn)生數(shù)據(jù)的目標(biāo)要求:詳細(xì)的、歷史的、規(guī)范化的、可理解的、即時(shí)的、質(zhì)量可控制的10、 簡(jiǎn)述分類器設(shè)計(jì)階段包含的3個(gè)過程。劃分?jǐn)?shù)據(jù)集,分類器構(gòu)造,分類器測(cè)試11、 什么是數(shù)據(jù)清洗?P33數(shù)據(jù)清洗是一種使用模式識(shí)別和其他技術(shù),在將原始數(shù)據(jù)轉(zhuǎn)換和移到數(shù)據(jù)倉庫之前來升級(jí)原始數(shù)據(jù)質(zhì)量的技術(shù)。12、 支持度和置信度的計(jì)算公式及數(shù)據(jù)計(jì)算(P90)找出所有的規(guī)則X Y , 使支持度和置信度分別大于門限支持度:

11、 事務(wù)中X和Y同時(shí)發(fā)生的比例,P(X Y)置信度:項(xiàng)集X發(fā)生時(shí),Y同時(shí)發(fā)生的條件概率P(Y|X)Example:13、利用信息包圖設(shè)計(jì)數(shù)據(jù)倉庫概念模型需要確定的三方面內(nèi)容。P57確定指標(biāo),確定維度,確定類別14、K-近鄰分類方法的操作步驟(包括算法的輸入和輸出)。P12815、什么是技術(shù)元數(shù)據(jù),主要包含的內(nèi)容?P29技術(shù)元數(shù)據(jù)是描述關(guān)于數(shù)據(jù)倉庫技術(shù)細(xì)節(jié)的數(shù)據(jù),應(yīng)用于開發(fā)、管理和維護(hù)DW,包含:l DW結(jié)構(gòu)的描述,如DW的模式、視圖、維、層次結(jié)構(gòu)和導(dǎo)出數(shù)據(jù)的定義,數(shù)據(jù)集市的位置和內(nèi)容等l 業(yè)務(wù)系統(tǒng)、DW和數(shù)據(jù)集市的體系結(jié)構(gòu)和模式l 匯總算法。包括度量和維定義算法,數(shù)據(jù)粒度、主題領(lǐng)域、聚合、匯總和

12、預(yù)定義的查詢和報(bào)告。l 由操作型業(yè)務(wù)環(huán)境到數(shù)據(jù)倉庫業(yè)務(wù)環(huán)境的映射。包括源數(shù)據(jù)和他們的內(nèi)容、數(shù)據(jù)分割、數(shù)據(jù)提取、清洗、轉(zhuǎn)換規(guī)則和數(shù)據(jù)刷新規(guī)則及安全(用戶授權(quán)和存取控制)16、業(yè)務(wù)元數(shù)據(jù)主要包含的內(nèi)容?P29業(yè)務(wù)元數(shù)據(jù):從業(yè)務(wù)角度描述了DW中的數(shù)據(jù),提供了介于使用者和實(shí)際系統(tǒng)之間的語義層,主要包括:l 使用者的業(yè)務(wù)屬于所表達(dá)的數(shù)據(jù)模型、對(duì)象名和屬性名l 訪問數(shù)據(jù)的原則和數(shù)據(jù)的來源l 系統(tǒng)提供的分析方法及公式和報(bào)表的信息。17、K-means算法的基本操作步驟(包括算法的輸入和輸出)。P13818、數(shù)據(jù)從集結(jié)區(qū)加載到數(shù)據(jù)倉庫中的主要方法?P36l SQL命令(如Insert或Update)l 由DW

13、供應(yīng)商或第三方提供專門的加載工具l 由DW管理員編寫自定義程序19、多維數(shù)據(jù)模型中的基本概念:維,維類別,維屬性,粒度P37l 維:人們觀察數(shù)據(jù)的特定角度,是考慮問題的一類屬性,如時(shí)間維或產(chǎn)品維l 維類別:也稱維分層。即同一維度還可以存在細(xì)節(jié)程度不同的各個(gè)類別屬性(如時(shí)間維包括年、季度、月等)l 維屬性:是維的一個(gè)取值,是數(shù)據(jù)線在某維中位置的描述。l 粒度:DW中數(shù)據(jù)綜合程度高低的一個(gè)衡量。粒度低,細(xì)節(jié)程度高,回答查詢的種類多 ?20、Apriori算法的基本操作步驟P93C Apriori使用一種稱作逐層搜索的迭代方法,K項(xiàng)集用于探索K+1項(xiàng)集。C 該方法是基于候選的策略,降低候選數(shù)C Apriori剪枝原則:若任何項(xiàng)集是非頻繁的,則其超集必然是非頻繁的(不用產(chǎn)生和測(cè)試超集)C 該原則基于以下支持度的特性:CE 項(xiàng)集的支持度不會(huì)超過其子集E 支持度的反單調(diào)特性(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論