




已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、 f(x)Pm(x)ex型,二、f(x)=elxPl(x)coswx+Pn(x)sinwx型,12.9 二階常系數(shù)非齊次線性微分方程,上頁(yè),下頁(yè),鈴,結(jié)束,返回,首頁(yè),方程ypyqyf(x)稱(chēng)為二階常系數(shù)非齊次線性微分方程 其中p、q是常數(shù) 二階常系數(shù)非齊次線性微分方程的通解是對(duì)應(yīng)的齊次方程的通解yY(x)與非齊次方程本身的一個(gè)特解yy*(x)之和 yY(x)y*(x),提示,=Q(x)(2p)Q(x)(2pq)Q(x)ex,Q(x)+2Q(x)+2Q(x)ex+pQ(x)+Q(x)ex+qQ(x)ex,一、 f(x)Pm(x)ex 型,y*Q(x)ex,設(shè)方程ypyqyPm(x)ex 特解形式為,下頁(yè),Q(x)(2p)Q(x)(2pq)Q(x)Pm(x) (),則得,Q(x)exQ(x)exqQ(x)ex,y*py*qy*,提示,此時(shí)2pq0 要使()式成立 Q(x)應(yīng)設(shè)為m次多項(xiàng)式 Qm(x)b0xmb1xm1 bm1xbm,(1)如果不是特征方程r2prq0的根 則,y*Qm(x)ex,下頁(yè),一、 f(x)Pm(x)ex 型,y*Q(x)ex,設(shè)方程ypyqyPm(x)ex 特解形式為,Q(x)(2p)Q(x)(2pq)Q(x)Pm(x) (),則得,提示,此時(shí)2pq0 但2p0 要使()式成立 Q(x)應(yīng)設(shè)為m1次多項(xiàng)式 Q(x)xQm(x) 其中Qm(x)b0xm b1xm1 bm1xbm,(2)如果是特征方程r2prq0的單根, 則,y*xQm(x)ex,下頁(yè),(1)如果不是特征方程r2prq0的根 則,y*Qm(x)ex,一、 f(x)Pm(x)ex 型,y*Q(x)ex,設(shè)方程ypyqyPm(x)ex 特解形式為,Q(x)(2p)Q(x)(2pq)Q(x)Pm(x) (),則得,提示:,此時(shí)2pq0 2p0 要使()式成立 Q(x)應(yīng)設(shè)為m2次多項(xiàng)式 Q(x)x2Qm(x) 其中Qm(x)b0xmb1xm1 bm1xbm,(3)如果是特征方程r2prq0的重根, 則,y*x2Qm(x)ex,下頁(yè),(2)如果是特征方程r2prq0的單根, 則,y*xQm(x)ex,(1)如果不是特征方程r2prq0的根 則,y*Qm(x)ex,一、 f(x)Pm(x)ex 型,y*Q(x)ex,設(shè)方程ypyqyPm(x)ex 特解形式為,Q(x)(2p)Q(x)(2pq)Q(x)Pm(x) (),則得,結(jié)論,二階常系數(shù)非齊次線性微分方程 ypyqyPm(x)ex 有形如 y*xkQm(x)ex 的特解 其中Qm(x)是與Pm(x)同次的多項(xiàng)式 而k按不是特征方程的根、是特征方程的單根或是特征方程的的重根依次取為0、1或2,下頁(yè),提示,因?yàn)閒(x)Pm(x)ex3x1 0不是特征方程的根 所以非齊次方程的特解應(yīng)設(shè)為 y*b0xb1 把它代入所給方程 得,例1 求微分方程y2y3y3x1的一個(gè)特解,解,齊次方程y2y3y0的特征方程為r22r30,b0xb12b0xb13b0xb1,3b0x2b03b1,2b03b0x3b1,3b0x2b03b13x1,提示,3b03 2b03b11,特解形式,例2 求微分方程y5y6yxe2x的通解,解,齊次方程y5y6y0的特征方程為r25r 60,其根為r12 r23,提示,齊次方程y5y6y0的通解為YC1e2xC2e3x ,因?yàn)閒(x)Pm(x)exxe2x 2是特征方程的單根 所以非齊次方程的特解應(yīng)設(shè)為 y*x(b0xb1)e2x 把它代入所給方程 得,2b0x2b0b1x,提示,2b01 2b0b10,特解形式,首頁(yè),例2 求微分方程y5y6yxe2x的通解,解,齊次方程y5y6y0的特征方程為r25r 60,其根為r12 r23,2b0x2b0b1x,因此所給方程的通解為,因?yàn)閒(x)Pm(x)exxe2x 2是特征方程的單根 所以非齊次方程的特解應(yīng)設(shè)為 y*x(b0xb1)e2x 把它代入所給方程 得,特解形式,二階常系數(shù)非齊次線性微分方程 ypyqyexPl(x)cosxPn(x)sinx 有形如 y*xkexR(1)m(x)cosxR(2)m(x)sinx 的特解 其中R(1)m(x)、R(2)m(x)是m次多項(xiàng)式 mmaxl n 而k按i(或i)不是特征方程的根或是特征方程的單根依次取0或1,二、f(x)=elxPl(x)coswx+Pn(x)sinwx型,下頁(yè),結(jié)論,解,結(jié)束,特解形式,例3 求微分方程yyxcos2x的一個(gè)特解,因?yàn)閒(x)exPl(x)cosxPn(x)sinxxcos2x i2i不是特征方程的根
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年信息系統(tǒng)集成與管理考試試題及答案
- 2025年網(wǎng)絡(luò)媒介與傳播學(xué)專(zhuān)業(yè)模擬考試試題及答案
- 2025年設(shè)計(jì)思維與創(chuàng)新實(shí)踐考試題及答案
- 2025年人力資源管理師考試題及答案
- 2025年企業(yè)財(cái)務(wù)分析與決策制定考試卷及答案
- 2025年農(nóng)業(yè)經(jīng)濟(jì)管理專(zhuān)業(yè)人才招聘考試試題及答案
- 2025年老年心理學(xué)理論與應(yīng)用知識(shí)考試試卷及答案
- 2025年會(huì)計(jì)電算化專(zhuān)業(yè)實(shí)踐能力考試試題及答案
- 2025年編輯出版專(zhuān)業(yè)人才招聘考試試題及答案
- 2025年財(cái)稅專(zhuān)業(yè)資格考試試卷及答案
- 8.4 流體壓強(qiáng)與流速的關(guān)系 課件-2024-2025學(xué)年滬科版物理八年級(jí)下冊(cè)
- 輸血管理相關(guān)制度
- 【北師大版】2024-2025學(xué)年一年級(jí)數(shù)學(xué)下冊(cè)教學(xué)計(jì)劃(及進(jìn)度表)
- 商業(yè)安全培訓(xùn)
- 老年性癡呆病人的護(hù)理與管理
- 糖尿病足護(hù)理疑難病例討論
- 草原草場(chǎng)承包合同
- 廣西河池市2023-2024學(xué)年高二下學(xué)期7月期末考試 英語(yǔ) 含解析
- 數(shù)字化賦能城鄉(xiāng)融合發(fā)展
- 心臟驟停病人的搶救與護(hù)理
- 小紅書(shū)種草營(yíng)銷(xiāo)師(初級(jí))認(rèn)證考試真題試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論