數(shù)控機(jī)床改造外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第1頁(yè)
數(shù)控機(jī)床改造外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第2頁(yè)
數(shù)控機(jī)床改造外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第3頁(yè)
數(shù)控機(jī)床改造外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第4頁(yè)
數(shù)控機(jī)床改造外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

英文翻譯 The Numerical Control Engine Bed Transforms First numerical control system development summary brief history and tendency In 1946 the first electronic accounting machine was born in the world, this indicated the humanity created has been possible to strengthen and partially to replace the mental labor the tool. It with the humanity these which in the agriculture, the industry society created only is strengthens the physical labor the tool to compare, got up the quality leap, entered the information society for the humanity to lay the foundation. After 6 years, in 1952, computer technology applied to the engine bed, the first numerical control engine bed was born in US. From this time on, the traditional engine bed has had the archery target change. Since nearly half century, the numerical control system has experienced two stages and six generation of development. 1.1 Numerical control (NC) stage (1952 1970) The early computer operating speed is low, was not big to then science computation and the data processing influence, but could not adapt the engine bed real-time control request. The people can not but use numeral logic circuit to build to become an engine bed special purpose computer to take the numerical control system, is called the hardware connection numerical control (HARD-WIRED NC), short for numerical control (NC). Along with the primary device development, this stage has had been through repeatedly three generations, namely 1952 first generation of - electron tube; 1959 second generation of - transistor; 1965 third generation - small scale integration electric circuit. 1.2 Computer numerical control (CNC) stage (in 1970 present) In 1970, the general minicomputer already appeared and the mass production. Thereupon transplants it takes the numerical control system the core part, from this time on entered the computer numerical control (CNC) the stage (which should have computer in front of the general two characters to abbreviate). In 1971, American INTEL Corporation in the world first time the computer two most cores part - logic units and the controller, used the large scale integrated circuit technology integration on together the chip, called it the microprocessor (MICROPROCESSOR), also might be called the central processing element (to be called CPU). The microprocessor is applied to 1974 in the numerical control system. This is because minicomputer function too strong, controlled an engine bed ability to have wealthily (therefore once uses in controlling the multi- Taiwan engine bed at that time, called it group control), was inferior to used the microprocessor economy to be reasonable. Moreover then small machine reliability was not ideal. The early microprocessor speed and the function although insufficiently are also high, but may solve through the multi-processor structure. Because the microprocessor is the general-purpose calculator core part, therefore still was called the computer numerical control. In 1990, PC machine (personal computer, domestic custom had called microcomputer) the performance has developed to the very high stage, may satisfyingly take the numerical control system core part the request. The numerical control system henceforth entered based on the PC stage. In brief, the computer numerical control stage has also experienced three generations. Namely 1970 fourth generation of - minicomputer; 1974 five dynasties - microprocessor and 1990 sixth generation - (overseas was called PC-BASED) based on PC. Also must point out, although overseas already renamed as the computer numerical control (namely CNC). Also must point out, although overseas already renamed as the computer numerical control (namely CNC), but our country still the custom called the numerical control (NC). Therefore we daily say numerical control, the materially already was refers to computer numerical control. 1.3 The numerical control future will develop tendency 1.3.1 Open style continues to, to develop based on the PC sixth generation of direction The software and hardware resource has which based on PC is rich and so on the characteristic, the more numerical controls serial production factory can step onto this path. Uses PC machine to take at least its front end machine, processes the man-machine contact surface, the programming, the association Question and so on net correspondence, undertakes the numerical control duty by the original system. PC machine has the friendly man-machine contact surface, will popularize to all numerical controls system. The long-distance communication, the long-distance diagnosis and the service will be more common. 1.3.2 Approaches and the high accuracy development This is adapts the engine bed to be high speed and the high accuracy direction need to develop. 1.3.3 Develops to the intellectualized direction Along with the artificial intelligence in the computer domain unceasing seepage and the development, the numerical control system intellectualized degree unceasingly will enhance. (1) Applies the adaptive control technology The numerical control system can examine in the process some important information, and the automatic control system related parameter, achieves the improvement system running status the goal. (2) Introduces the expert system instruction processing The skilled worker and experts experience, the processing general rule and the special rule store in the system, take the craft parameter database as the strut, the establishment has the artificial intelligence the expert system. (3) Introduces the breakdown to diagnose the expert system (4) Intellectualized numeral servo drive May through the automatic diagnosis load, but the automatic control parameter, causes the actuation system to obtain the best movement. Second, engine bed numerical control transformation necessity 2.1 microscopic looks at the transformation the necessity From on microscopic looked below that, the numerical control engine bed has the prominent superiority compared to the traditional engine bed, moreover these superiority come from the computer might which the numerical control system contains. 2.1.1 May process the traditional engine bed cannot process the curve, the curved surface and the complex components and so on. Because the computer has the excellent operation ability, maybe the instant accurately calculate each coordinate axis instant to be supposed the movement physiological load of exercise, therefore may turn round the synthesis complex curve or the curved surface. 2.1.2 May realize the processing automation, moreover is the flexible automation, thus the efficiency may enhance 3 7 times compared to the traditional engine bed. Because the computer has the memory and the memory property, may the procedure which inputs remember and save, then the order which stipulated according to the procedure automatic carries out, thus realization automation. The numerical control engine bed so long as replaces a procedure, may realize another work piece processing automation, thus causes the single unit and the small batch of production can automate, therefore is called has realized flexible automation. 2.1.3 Processing components precision high, size dispersion degree small, makes the assembly to be easy, no longer needs to make repairs. 2.1.4 May realize the multi- working procedures centralism, reduces the components in engine bed between frequent transporting. 2.1.5 has auto-alarm, the automatic monitoring, and automatic compensation and so on the many kinds of autonomy function, thus may realize long time nobody to safeguard the processing. 2.1.6 Advantage which derives by above five. For example: Reduced workers labor intensity, saved the labor force (a person to be possible to safeguard the multi- Taiwan engine bed), reduced the work clothes, reduced the new product trial manufacturing cycle and the production cycle, might to the market demand make rapid reaction and so on. Above these superiority are the predecessor cannot imagine, is an extremely significant breakthrough. In addition, the engine bed numerical control carries out FMC (flexible manufacture unit), FMS (flexible manufacture system) as well as CIMS (computer integration manufacture system) and so on the enterprise becoming an information based society transformation foundation. The numerical control technology already became the manufacturing industry automation the core technology and the foundation technology. 2.2 great watches the transformation the necessity From on macroscopic looked that, the industry developed country armed forces, the airplane weapon industry, in the end of the 70s, at the beginning of the 80s started the large-scale application numerical control engine bed. Its essence is, uses the information technology to the traditional industry (including the armed forces, airplane weapon industry) carries on the technological transformations. Except that uses outside the numerical control engine bed, FMC, FMS in the manufacture process, but also includes in the product development carries out CAD, CAE, CAM, the hypothesized manufacture as well as carries out MIS in the production management (management information system), CIMS and so on. As well as increases the information technology in its production product, including artificial intelligence and so on content. Because uses the information technology to the country foreign troops, the airplane weapon industry carries on the thorough transformation (to call it becoming an information based society), finally causes them the product in the international military goods and in the goods for civilian use market the competitive power greatly is the enhancement. But we in the information technology transformation tradition industry aspect compared to the developed country to fall behind approximately for 20 years. Like in our country engine bed capacity, numerical control engine bed proportion (numerical control rate) to 1995 only then 1.9%, but Japan has reached 20.8% in 1994, therefore every year has the massive mechanical and electrical products import. This also on from on macroscopic explained the engine bed numerical control transformation necessity. Third, the numerical control transformation content and superiorly lacks 3.1 Transformation industry starting In US, Japan and Germany and so on the developed country, their engine bed transforms took the new economical growth profession, thrives abundantly, is occupying the golden age. As a result of the engine bed as well as the technical unceasing progress, the engine bed transformation is the eternal topic. Our countrys engine bed transformation industry also enters from the old profession to by the numerical control technology primarily new profession. In US, Japan, Germany, have the broad market with the numerical control technological transformations engine bed and the production line, has formed the engine bed and the production line numerical control transformation new profession. In US, the engine bed transformation industry is called the engine bed regeneration (Remanufacturing) industry. Is engaged in the regeneration industry famous company to include: The Borscht engineering firm, the atone engine bed company, Devlieg-Bullavd (are valuable) serves the group, the US equipment company and so on. The American valuable company has set up the company in China. In Japan, the engine bed transformation industry is called the engine bed to reequip (Retrofitting) industry. Is engaged in the equipment industry famous company to include: Big indentation project group, hillock three mechanical companies, thousand substitute fields labor machine company, wild engineering firm, shore field engineering firm, mountain this engineering firm and so on. 3.2 Numerical control transformation content The engine bed and the production line numerical control transformation main content has following several points: First is extensively recovers the function, to the engine bed, the production line has the breakdown partially to carry on the diagnosis and the restoration; Second is NC, the addend reveals the installment on the ordinary engine bed, or adds the numerical control system, transforms the NC engine bed, the CNC engine bed; Third is renovates, for increases the precision, the efficiency and the automatist, to the machinery, the electricity partially carries on renovates, reassembles the processing to the machine part, extensively recovers the precision; Does not satisfy the production request to it the CNC system to carry on the renewal by newest CNC; Fourth is the technology renews or the technical innovation, for enhances the performance or the scale, or in order to use the new craft, the new technology, carries on the big scale in the original foundation the technology to renew or the technical innovation, the great scope raises the level and the scale renewal transformation. The new electrical system transforms after, how carries on the debugging as well as the determination reasonable approval standard, also is the technology preparatory work important link. The debugging work involves the machinery, the hydraulic pressure, the electricity, the control, and so on; therefore must carry on by the project person in charge, other personnel coordinate. The debugging step may conform to simplicity to numerous, from infancy to maturity, carries on from outside to in, after also may the partial overall situation, after first the subsystem. 3.3 The numerical control transformation superiorly lacks 3.3.1 Reduced investment costs, the date of delivery are short With purchases the new engine bed to compare, May save 60% 80% expenses generally, the transformation expense is low. Large-scale, the special engine bed especially is especially obvious. The common large-scale engine bed transforms, only spends the new engine bed purchase expense 1/3, the date of delivery is short. But some peculiar circumstances, like the high speed main axle, the tray automatic switching unit manufacture and the installment too requires a lot of work, costs a great deal of money, often transforms the cost to enhance 2 3 times, with purchases the new engine bed to compare, only can economical invest about 50%. 3.3.2 Machine capability stable are reliable, the structure is limited Uses foundation and so on lathe bed, column all is heavy but the firm casting component, but is not that kind of welding component, after the transformation engine bed performance high, the quality is good, may take the new equipment continues to use many years. But receives the original mechanism the limit, not suitably makes the unprecedented transformation. 3.3.3 Familiar understood the equipment, is advantageous for the operation service When purchases the new equipment, did not understand whether the new equipment can satisfy its processing request. The transformation then otherwise, may precisely calculate the engine bed the processing ability; Moreover, because many years use, the operator already understood to the engine bed characteristic, uses and services the aspect to train the time in the operation short, effective is quick. The transformation engine bed as soon as installs, may realize the capacity load revolution. 3.3.4 May fully use the existing condition May fully use the existing ground, does not need to like buys when the new equipment such to have retro construct the ground. 3.3.5 May use the newest control technology Enhances the production equipment the automated level and the efficiency, improves the equipment quality and the scale, and alters to the old engine bed now the horizontal engine bed. Fourth, numerical control system choice When the numerical control system mainly has three kinds of types, the transformation, should act according to the special details to carry on the choice. 4.1 Step-by-steps the open system which the electrical machinery drives This system servo drive mainly is step-by-steps the electrical machinery, the power step-by-steps the electrical machinery, the battery solution pulse motor and so on. Entering sends out which by the numerical control system for instruction pulse, after the actuation electric circuit control and the power enlargement, causes to step-by-step the electrical machinery rotation, through gear vice- and ball bearing guide screw vice- actuation executive component. So long as the control command pulse quantity, the frequency as well as the circular telegram order, then may control the executive component movement the displacement quantity, the speed and the heading. This kind of system does not need the physical location and the velocity feedback which obtains to the input end, therefore called it the open system, this system displacement precision mainly decided in step-by-steps the electrical machinery angular displacement precision, transmission part and so on gear guide screw pitches the precision, therefore the system displacement precision is low. This system structure simple, debugging service convenient, work reliable, cost low, is easy to reequip successfully. 4.2 The asynchronous motor or the direct current machine drive, diffraction grating survey feedback closed loop numerical control system This system and the open system difference is: Physical location feedback signal which by position detector set and so on the diffraction grating, induction synchromesh obtains, carries on the comparison as necessary with the given value, two interpolations enlargements and the transformation, the actuation implementing agency, by the speed which assigns turns towards the elimination deviation the direction movement, until assigns the position and the feedback physical location interpolation is equal to the zero. The closed loop enters for the system Enters for the system complex in the structure compared to the split-ring, the cost is also high, requests strictly to the environment room temperature. The design and the debugging is all more difficult than the open system. But may obtain compared to the split-ring enters for a system higher precision, quicker speed, actuation power bigger characteristic target. May act according to the product specification, decided whether uses this kind of system. 4.3 The direct current servo electrical machinery drives, encoder feedback semi-closure link numerical control system Half closed-loop system examination part installs in among passes in the moving parts, indirectly surveys the executive component the position. It only can compensate a system ring circuit interior part of part the error, therefore, its precision compared to closed-loop system precision low, but its structure and the debugging all compares the closed-loop system to be simple. In makes the angular displacement examination part and the speed examination part and the servo electrical machinery time a whole then does not need to consider the position detector set installs the question. The current production numerical control system company factory quite are many, overseas famous company like German SIEMENS Corporation, Japanese FANUC Corporation; Native corporation like China Mount Everest Corporation, Beijing astronautics engine bed numerical control system group company, Central China numerical control company and She yang upscale numerical control country engineering research center. When choice numerical control system mainly is each kind of precision which the engine bed must achieve after the numerical control transformation, actuates the electrical machinery the power and users request. Fifth in the numerical control transformation the main mechanical part reequips the discussion A new numerical control engine bed, must achieve in the design that, Has the high static dynamic rigidity; Movement vice- between friction coefficient small, the transmission is ceaseless; the power is big; Is advantageous for the operation and the service. When engine bed numerical control transformation should meet the above requirements as far as possible. Cannot think the numerical control installment and the ordinary engine bed connects in has met the numerical control engine bed requirements together, but also should carry on the corresponding transformation to the major component to enable it to achieve the certain design request, can obtain the anticipated transformation goal. 5.1 skids guide rail Said to the numerical control lathe that, the guide rail besides should have the conventional lathe guidance precision and the technology capability, but also must have good bears the friction, the attrition characteristic, and the reduction but sends the dead area because of the friction drag. At the same time must have the enough rigidity, by reduces the guide rail to distort to processes the precision the influence, and must have the reasonable guide rail protection and the lubrication. 5.2 gear The common engine bed gear mainly concentrates in the headstock and the gear box. In order to guarantee the transmission precision, on the numerical control engine bed uses the gear precision class is all higher than the ordinary engine bed. Must be able to achieve the ceaseless transmission in the structure, thus transforms time, the engine bed main gear must satisfy the numerical control engine bed the request, by guarantees the engine bed processing precision. 5.3 skids the guide screw and the ball bearing guide screw The guide screw transmission relates directly to the transmission chain precision. The guide screw selects mainly is decided requests and drives the torque request in the job precision. Is not used by job precision request GAO Shrike skids the guide screw, but should inspect the original guide screw attrition situation, like the pitch error and the pitch accumulative error as well as matches the nut gap. The ordinary circumstances skid the guide screw to be supposed not to be lower than 6 levels, the nut gap oversized then replaces the nut. Uses skids the guide screw relative ball bearing guide screw price to be low, but satisfies the precision high components processing with difficulty. The ball bearing guide screw rubs loses slightly, the efficiency is high, its transmission efficiency may above 90%; Precision high, the life is long; When start moment of force and movement the moment of force approaches, may reduce the electrical machinery to start the moment of force. Therefore may satisfied compare the high accuracy components processing request. 5.4 Safe protections The effect must take the security as a premise. Transforms in the engine bed must take the corresponding measure according to the actual situation, cuts noticeable. The ball bearing guide screw vice- is the precision part, when the work must take strict precautions against the dust is specially the scrap and the hard sand grains enters the roller conveyer. On longitudinal guide screw also coca overall sheet iron safety mask. The big carriage with skids two end surfaces which the guide rail contacts to have to seal, prevented absolutely the flinty granulated foreign matter enters the sliding surface damage guide rail. Sixth, after the engine bed electrical system transformation, to operates, the programmers inevitably bring the new request. Therefore ahead of time carries on new system knowledge training to the operator and the programmers to be extremely important, after otherwise will affect the transformation the engine bed rapid investment production. The training content should include the new operation kneading board disposition, the function, the instruction meaning generally; New system functional scope, application method and with old system difference; Maintenance request; Programming standard and automated programming and so on. The key point is makes, gets a good grasp of the operating manual and the programming instruction booklet. the numerical control transforms se Transforms the scope according to each equipment differently, must beforehand design the connection partial transformations, if transforms completely, should design the electro-mechanical transformation connection, the operation kneading board control and the disposition, the interconnection partial contacts, the parameter measuring point, services the position and so on, the request operates and services conveniently, reasonable, the line moves towards, center the small junction smoothly few, the strong and the weak electrical noise is smallest, has the suitable allowance and so on. Partial transformation, but also needs to consider the new old system the performance match, the voltage polarity and the size transformation, install the position, the digital-analog conversion and so on, when the necessity must manufacture the transformation connection voluntarily. Vernal examples 1st, transforms the X53 milling machine with SIEMENS 810M In 1998, the company invested 200,000 Yuan, with German Siemens the 810M numerical control system, the 611A exchange servo drive system sides was the X53 milling machine carries on X, Y, the Z three axle numerical control transformation to a companys model; Retained the original main axle system and the cooling system; The transformation three axle has used the roller lead screw and the gear drive organization on the machinery. The entire transformation work including the machine design, the electrical design, the PLC procedure establishment and the debugging, the engine bed overhaul finally is the entire machine installment and the debugging. After the milling machine transforms, processing effective stroke X/Y/The Z axis respectively is 88.0/270/28 billion mm; Maximum speed X/Y/The Z axis respectively is 5000/1500/800 mm/Min; Manual speed X/Y/The Z axis respectively is 3000/1000/500 mm/Min; the engine bed processing precision achieves 0.001mm. The engine bed three coordinates linkage may complete each kind of complex curve or the curved surface processing. 2nd, transforms the C6140 lathe with GSK980T and the exchange servo drive system sides In 2000, with Guangzhou numerical control plant production GSK980T numerical control system, the DA98 exchange servo unit and 4 locations automatic tool rests to an electrical machinery branch factory C6140 lathe X, the Z two axes carries on the numerical control transformation; Retained the original main axle system and the cooling system; The transformation two axes have used the roller lead screw and with the ambulacrums transmission system on the machinery. Entire transformation work including machine design, electrical design, engine bed overhaul and entire machine installment and debugging. After the lathe transforms, processing effective stroke X/The Z axis respectively is 3.90/73 million mm; Maximum speed X/The Z axis respectively is 120.0/3 million mm/Min; The manual speed is 400mm/Min; Manual is fast is X/The Z axis respectively is 120.0/3 million mm/Min; The engine bed smallest migration unit is 0.001mm. 3rd, transforms the X53 milling machine with SIEMENS 802S In 2000, the company invests 120,000 Yuan, with German Siemens the 802S numerical control system, step-by-steps the actuation system is the X53 milling machine carries on X, Y, the Z three axle numerical control transformation to companys another model; Retained the original main axle system and the cooling system; The transformation three axle has used the roller lead screw and the gear drive organization on the machinery. The entire transformation work including the machine design, the electrical design, the engine bed overhaul, finally is the entire machine installment and the debugging. After the milling machine transforms, processing effective stroke X/Y/The Z axis respectively is 63.0/240/28 billion mm; Maximum speed X/Y/The Z axis respectively is 3000/1000/600 mm/Min; Manual enters for speed X/Y/The Z axis respectively is 200.0/800/5 billion mm/Min; The smallest motion unit is 0.001mm. 數(shù)控機(jī)床改造 一、數(shù)控系統(tǒng)發(fā)展簡(jiǎn)史及趨勢(shì) 1946 年誕生了世界上第一臺(tái)電子計(jì)算機(jī),這表明人類創(chuàng)造了可增強(qiáng) 和部分代替腦力勞動(dòng)的工具。它與人類在農(nóng)業(yè)、工業(yè)社會(huì)中創(chuàng)造的那些只是增強(qiáng)體力勞動(dòng)的工具相比,起了質(zhì)的飛躍,為人類進(jìn)入信息社會(huì)奠定了基礎(chǔ)。 6 年后,即在 1952 年,計(jì)算機(jī)技術(shù)應(yīng)用到了機(jī)床上,在美國(guó)誕生了第一臺(tái)數(shù)控機(jī)床。從此,傳統(tǒng)機(jī)床產(chǎn)生了質(zhì)的變化。近半個(gè)世紀(jì)以來,數(shù)控系統(tǒng)經(jīng)歷了兩個(gè)階段和六代的發(fā)展。 1.1、數(shù)控( NC)階段( 1952 1970 年) 早期計(jì)算機(jī)的運(yùn)算速度低,對(duì)當(dāng)時(shí)的科學(xué)計(jì)算和數(shù)據(jù)處理影響還不大,但不能適應(yīng)機(jī)床實(shí)時(shí)控制的要求。人們不得不采用數(shù)字邏輯電路 搭 成一臺(tái)機(jī)床專用計(jì)算機(jī)作為數(shù)控系統(tǒng),被 稱為硬件連接數(shù)控( HARD-WIRED NC),簡(jiǎn)稱為數(shù)控( NC)。隨著元器件的發(fā)展,這個(gè)階段歷經(jīng)了三代,即 1952 年的第一代 -電子管; 1959 年的第二代 -晶體管; 1965 年的第三代 -小規(guī)模集成電路。 1.2、計(jì)算機(jī)數(shù)控( CNC)階段( 1970 年現(xiàn)在) 到 1970 年,通用小型計(jì)算機(jī)業(yè)已出現(xiàn)并成批生產(chǎn)。于是將它移植過來作為數(shù)控系統(tǒng)的核心部件,從此進(jìn)入了計(jì)算機(jī)數(shù)控( CNC)階段(把計(jì)算機(jī)前面應(yīng)有的 通用 兩個(gè)字省略了)。到 1971 年,美國(guó) INTEL 公司在世界上第一次將計(jì)算機(jī)的兩個(gè)最核心的部件 -運(yùn)算 器和控制器,采用大規(guī)模集成電路技術(shù)集成在一塊芯片上,稱之為微處理器( MICROPROCESSOR),又可稱為中央處理單元(簡(jiǎn)稱 CPU)。 到 1974 年微處理器被應(yīng)用于數(shù)控系統(tǒng)。這是因?yàn)樾⌒陀?jì)算機(jī)功能太強(qiáng),控制一臺(tái)機(jī)床能力有富裕(故當(dāng)時(shí)曾用于控制多臺(tái)機(jī)床,稱之為群控),不如采用微處理器經(jīng)濟(jì)合理。而且當(dāng)時(shí)的小型機(jī)可靠性也不理想。早期的微處理器速度和功能雖還不夠高,但可以通過多處理器結(jié)構(gòu)來解決。由于微處理器是通用計(jì)算機(jī)的核心部件,故仍稱為計(jì)算機(jī)數(shù)控。 到了 1990 年, PC 機(jī)的性能已發(fā)展到很高的階段,可以滿足作 為數(shù)控系統(tǒng)核心部件的要求。數(shù)控系統(tǒng)從此進(jìn)入了基于 PC 的階段。 總之,計(jì)算機(jī)數(shù)控階段也經(jīng)歷了三代。即 1970 年的第四代 -小型計(jì)算機(jī);1974 年的第五代 -微處理器和 1990 年的第六代 -基于 PC(也就是為 PC-BASED)。 1.3、數(shù)控未來發(fā)展的趨勢(shì) 1.3.1 繼續(xù)向開放式、基于 PC 的第六代方向發(fā)展 基于 PC 所具有的開放性、低成本、高可靠性、軟硬件資源豐富等特點(diǎn),更多的數(shù)控系統(tǒng)生產(chǎn)廠家會(huì)走上這條道路。至少采用 PC 機(jī)作為它的前端機(jī),來處理人機(jī)界面、編程、聯(lián)網(wǎng)通信等問題,由原有的系統(tǒng)承擔(dān)數(shù)控的任 務(wù)。 PC 機(jī)所具有的友好的人機(jī)界面,將普及到所有的數(shù)控系統(tǒng)。遠(yuǎn)程通訊,遠(yuǎn)程診斷和維修將更加普遍。 1.3.2 向高速化和高精度化發(fā)展 這是適應(yīng)機(jī)床向高速和高精度方向發(fā)展的需要。 1.3.3 向智能化方向發(fā)展 隨著人工智能在計(jì)算機(jī)領(lǐng)域的不斷滲透和發(fā)展,數(shù)控系統(tǒng)的智能化程度將不斷提高。 ( 1)應(yīng)用自適應(yīng)控制技術(shù) 數(shù)控系統(tǒng)能檢測(cè)過程中一些重要信息,并自動(dòng)調(diào)整系統(tǒng)的有關(guān)參數(shù),達(dá)到改進(jìn)系統(tǒng)運(yùn)行狀態(tài)的目的。 ( 2)引入專家系統(tǒng)指導(dǎo)加工 將熟練工人和專家的經(jīng)驗(yàn),加工的一般規(guī)律和特殊規(guī)律存入系統(tǒng)中, 以工藝參數(shù)數(shù)據(jù)庫(kù)為支撐,建立具有人工智能的專家系統(tǒng)。 ( 3)引入故障診斷專家系統(tǒng) ( 4)智能化數(shù)字伺服驅(qū)動(dòng)裝置 可以通過自動(dòng)識(shí)別負(fù)載,而自動(dòng)調(diào)整參數(shù),使驅(qū)動(dòng)系統(tǒng)獲得最佳的運(yùn)行。 二、機(jī)床數(shù)控化改造的必要性 2.1、微觀看改造的必要性 從微觀上看,數(shù)控機(jī)床比傳統(tǒng)機(jī)床有以下突出的優(yōu)越性,而且這些優(yōu)越性均來自數(shù)控系統(tǒng)所包含的計(jì)算機(jī)的威力。 2.1.1 可以加工出傳統(tǒng)機(jī)床加工不出來的曲線、曲面等復(fù)雜的零件。 由于計(jì)算機(jī)有高超的運(yùn)算能力,可以瞬時(shí)準(zhǔn)確地計(jì)算出每個(gè)坐標(biāo)軸瞬時(shí)應(yīng)該運(yùn)動(dòng)的運(yùn)動(dòng)量,因此可以復(fù)合 成復(fù)雜的曲線或曲面。 2.1.2 可以實(shí)現(xiàn)加工的自動(dòng)化,而且是柔性自動(dòng)化,從而效率可比傳統(tǒng)機(jī)床提高 3 7 倍。 由于計(jì)算機(jī)有記憶和存儲(chǔ)能力,可以將輸入的程序記住和存儲(chǔ)下來,然后按程序規(guī)定的順序自動(dòng)去執(zhí)行,從而實(shí)現(xiàn)自動(dòng)化。數(shù)控機(jī)床只要更換一個(gè)程序,就可實(shí)現(xiàn)另一工件加工的自動(dòng)化,從而使單件和小批生產(chǎn)得以自動(dòng)化,故被稱為實(shí)現(xiàn)了 柔性自動(dòng)化 。 2.1.3 加工零件的精度高,尺寸分散度小,使裝配容易,不再需要 修配 。 2.1.4 可實(shí)現(xiàn)多工序的集中,減少零件 在機(jī)床間的頻繁搬運(yùn)。 2.1.5 擁有自動(dòng)報(bào)警 、自動(dòng)監(jiān)控、自動(dòng)補(bǔ)償?shù)榷喾N自律功能,因而可實(shí)現(xiàn)長(zhǎng)時(shí)間無人看管加工。 2.1.6 由以上五條派生的好處。 如:降低了工人的勞動(dòng)強(qiáng)度,節(jié)省了勞動(dòng)力(一個(gè)人可以看管多臺(tái)機(jī)床),減少了工裝,縮短了新產(chǎn)品試制周期和生產(chǎn)周期,可對(duì)市場(chǎng)需求作出快速反應(yīng)等等。 以上這些優(yōu)越性是前人想象不到的,是一個(gè)極為重大的突破。此外,機(jī)床數(shù)控化還是推行 FMC(柔性制造單元)、 FMS(柔性制造系統(tǒng))以及 CIMS(計(jì)算機(jī)集成制造系統(tǒng))等企業(yè)信息化改造的基礎(chǔ)。數(shù)控技術(shù)已經(jīng)成為制造業(yè)自動(dòng)化的核心技術(shù)和基礎(chǔ)技術(shù)。 2.2、宏觀看改造的必要 性 從宏觀上看,工業(yè)發(fā)達(dá)國(guó)家的軍、民機(jī)械工業(yè),在 70 年代末、 80 年代初已開始大規(guī)模應(yīng)用數(shù)控機(jī)床。其本質(zhì)是,采用信息技術(shù)對(duì)傳統(tǒng)產(chǎn)業(yè)(包括軍、民機(jī)械工業(yè))進(jìn)行技術(shù)改造。除在制造過程中采用數(shù)控機(jī)床、 FMC、 FMS 外,還包括在產(chǎn)品開發(fā)中推行 CAD、 CAE、 CAM、虛擬制造以及在生產(chǎn)管理中推行 MIS(管理信息系統(tǒng))、 CIMS 等等。以及在其生產(chǎn)的產(chǎn)品中增加信息技術(shù),包括人工智能等的含量。由于采用信息技術(shù)對(duì)國(guó)外軍、民機(jī)械工業(yè)進(jìn)行深入改造(稱之為信息化),最終使得他們的產(chǎn)品在國(guó)際軍品和民品的市場(chǎng)上競(jìng)爭(zhēng)力大為增強(qiáng)。 三、 數(shù)控化改造的內(nèi)容及優(yōu)缺 3.1、數(shù)控改造業(yè)的興起 在美國(guó)、日本和德國(guó)等國(guó)家,機(jī)床改造作為新的經(jīng)濟(jì)增長(zhǎng)行業(yè),生意盎然,正處在黃金時(shí)代。由于機(jī)床以及技術(shù)的不斷進(jìn)步,機(jī)床改造是個(gè) 永恒 的課題。在美國(guó)、日本、德國(guó),用數(shù)控技術(shù)改造機(jī)床和生產(chǎn)線具有廣闊的市場(chǎng),已形成了機(jī)床和生產(chǎn)線數(shù)控改造的新的行業(yè)。在美國(guó),機(jī)床改造業(yè)稱為機(jī)床再生( Remanufacturing)業(yè)。從事再生業(yè)的著名公司有: Borscht 工程公司、 Ayton 機(jī)床公司、得寶服務(wù)集團(tuán)、 US 設(shè)備公司等。在日本,機(jī)床改造業(yè)稱為機(jī)床改裝( Retrofitting)業(yè)。從事改裝業(yè)的著

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論