已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Korean J. Chem. Eng., 19(6), 986-991 (2002)To whom correspondence should be addressed.E-mail: limjskist.re.krSupercritical Carbon Dioxide Debinding in Metal Injection Molding (MIM) ProcessYong-Ho Kim, Youn-Woo Lee, Jong-Ku Park*, Chang-Ha Lee* and Jong Sung LimNational Research Lab. for Supercritical Fluid, *Ceramic Processing Center,Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea*Dept. of Chem. Eng., Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Korea(Received 4 March 2002 accepted 29 August 2002)AbstractThe conventional debinding process in metal injection molding (MIM) is critical, environmentally unfriendlyand time consuming. On the other hand, supercritical debinding is thought to be an effective method appropriate foreliminating the aforementioned inconvenience in the prior art. In this paper, supercritical debinding is compared withthe conventional wicking debinding process. The binder removal rates in supercritical CO2have been measured at333.15 K, 348.15 K, and 358.15 K in the pressure range from 20 MPa to 28 MPa. After sintering, the surface of thesilver bodies were observed by using SEM. When the supercritical CO2debinding was carried out at 348.15 K, all theparaffin wax (71 wt% of binder mixture) was removed in 2 hours under 28 MPa and in 2.5 hours under 25 MPa. Wealso studied the cosolvent effects on the binder removal rate in the supercritical CO2 debinding. It was found that theaddition of non-polar cosolvent (n-hexane) dramatically improves the binder removal rate (more than 2 times) for theparaffin wax-based binder system.Key words: Supercritical CO2Debinding, Metal Injection Molding (MIM), Binder, Diffusivity, CosolventINTRODUCTIONMetal injection molding (MIM) is used to make metallic partsthat cannot be readily produced by conventional material formingprocesses. It is a net-shape process and can be used to produce partswith complex geometries. In addition to being a cost-effective alter-native for cast or forged and machined parts, MIM enables one tomass produce complex-shaped parts that are difficult to machineby conventional methods German, 1987; Hens, 1990. Complexshapes that are produced using the MIM process can be formed in-expensively to nearly full-density through the use of a polymer-pow-der combination. Because high density can be achieved, the MIMprocess has the ability to mould high-performance engineering ma-terials Tam et al., 1997. Moreover, those parts are not necessaryto any secondary machining processes. Despite the numerous ad-vantages offered by the MIM process, several limitations exist thatincrease the complexity of the process. The debinding of MIM com-ponents is time-consuming and brings about defects, which affectproperties of the sintered parts because of capillary force Chartieret al., 1995, especially when the sizes of the powders used becomerelatively small (0In the case of a slab, the local content of solute remaining in thegreen body after some time t of extraction can be expressed by(2)It is often difficult to determine the concentration at various depths,and what is experimentally determined is the quantity of solute, whichhas been extracted, or the quantity remaining in the green part. Forthis purpose the average concentration is needed, and is obtainedby intergrating Eq. (2):(3)For a long duration of supercritical debinding (t0), the firstterm in the right hand side of Eq. (3) shows much larger than thesummation of the remaining terms, and hence, the fraction can beapproximated by Eq. (4).(4)The values of D are determined by using Eq. (4) by inserting ex-perimental values of average concentration ( ) at time t and ln( /c0)plotting with time. Then the diffusivities (D) can be obtained fromthe slope of the plot. Table 2 shows the densities and the diffusivi-ties determined in this work at supercritical conditions. The densityof pure CO2at a given temperature and pressure was calculated fromCt-= D2Cx2-cxt,() = 4c0pi-12n + 1- exp D2n + 1()2pi2tl2-sin2n + 1()pixl-n= 0cct() = 1l- cxt,()dx =0l8c0pi2-12n + 1()2-expD2n +1()2pi2tl2-n= 0cc0- =8pi2-12n +1()2-exp D2n + 1()2pi2tl2-n= 0cc0-=8pi2-exp Dpi2tl2-c cFig. 7. Effect of the cosolvent on binder removal rate in supercrit-ical debinding at 348.15 K, 25 MPa.Korean J. Chem. Eng.(Vol. 19, No. 6)990 Y.-H. Kim et al.the equation of state by Angus et al. 1976. This shows that dif-fusivity increases with an increase in pressure at constant tempera-ture. Fig. 5 and Fig. 6 show that theoretical curves calculated withEq. (3) by inserting diffusivities (D) obtained above are in good agree-ment with the measured data. In general, binder removal rate is af-fected by the diffusivity of wax, because solute diffusion will proba-bly govern the overall rate of mass transfer. Therefore, the diffu-sion of supercritical CO2might have relatively small effect on therate of mass transfer McHugh and Krukonis, 1994.6. The Analysis of the Sintered Parts SurfacesAfter debinding of the two samples-one is debinded by super-critical method and the other one is by wicking method-they weresintered at 1,673 K for 2 hours under vacuum conditions. The mi-crographs of two surfaces of the silver parts are compared in Fig. 8.As can be seen in these figures, the sample from wicking debind-ing has a few pores or cracks but that from supercritical debindinghas no defects.CONCLUSIONIn this paper, supercritical debinding is compared with conven-tional wicking debinding process. Wax-based binder system is usedin this experiment. The binder removal rate in supercritical CO2hasbeen measured at 333.15 K 348.15 K, and 358.15 in the pressurerange from 20 MPa to 28 MPa. After sintering, the surface of thesilver bodies was observed by using SEM. When the supercriticalCO2debinding was carried out at 348.15 K, almost all the wax (about71 wt% of binder) was removed in 2 hours under 28 MPa, and 2.5hrs under 25 MPa. We also studied the cosolvent effects (methanol,n-hexane) on the binder removal rate in the supercritical CO2 de-binding. It was found that the addition of non-polar cosolvent (n-hexane) dramatically improves the binder removal rate (more than2 times) for the paraffin wax-based binder system. The diffusivitiesof paraffin wax in supercritical CO2were calculated by Ficks dif-Table 2. Density-diffusivity relationship for binder removal insupercritical debindingTemp.(K)Pressure(MPa)Binderremoval for1 hr (wt%)Density ofsupercriticalCO2 (g/cm3)Diffusivity(m2/s)348.15 28 63.44 0.74595 3.651010348.15 25 59.93 0.71292 2.741010348.15 20 51.94 0.62824 1.821010358.15 25 60.19 0.66247 2.241010333.15 25 22.64 0.78774 5.291011Fig. 8. SEM micrographs for the surfaces of the silver parts sintered at 1,673 K for 2 hrs. The silver part debinded by (a) wicking method;(b) supercritical method.November, 2002Supercritical Carbon Dioxide Debinding in Metal Injection Molding (MIM) Process 991fusion model.In conclusion, supercritical CO2debinding may offer a short de-binding time and safe working environment as an alternative to thecurrent conventional debinding methods, such as the solvent extrac-tion or thermal debinding.ACKNOWLEDGMENTThis work was supported by Ministry of Science and Technol-ogy of Korea, the National Research Laboratory Program for Sup-ercritical Fluid. The financial contribution is greatly appreciated.REFERENCESAngus, S., Armstrong, A. and de Reuk, K. M., “Carbon dioxide. Inter-national Thermodynamic Tables of the Fluid State,” Pergamon, Ox-ford (1976).Chartier, T., Delhomme, E., Baumard, J. F., Marteau, P., Subra, P. andTureu, R., “Solubility, in Supercritical Carbon Dioxide, of ParaffinWaxes Used as Binders for Low-Pressure Injection Molding,” Ind.Eng. Chem. Res., 38, 1904 (1999).Chartier, T., Ferrato, M. and Baumard, J. F., “Supercritical Debindingof Injection Molded Ceramics,” J. Am. Ceram. Soc., 78, 1787 (1995).Chartier, T., Ferrato, M. and Baumard, J. F., “Influence of the Debind-ing Method on the Mechanical Properties of Plastic Formed Ceram-ics,” J. European Ceramic Society, 15, 899 (1995).Crank, J., “The Mathematics of Diffusion,” 2nd ed., Oxford UniversityPress, Oxford (1975).Dobbs, J. M., Wong, J. M., Lahiere, R. J. and Johnston, K. P., “Modifi-cation of Supercritical Fluid Phase Behavior Using Polar Cosolvents,”Ind. Eng. Chem. Res., 26, 56 (1987).Foster, N. R., Singh, H., Jimmy Yun, S. L., Tomasko, D. L. and Mac-naughton, S. J., “Polar and Nonpolar Cosolvent Effects on the Solu-bility of Cholesterol in Supercritical Fluids,” Ind. Eng. Chem. Res.,32, 2849 (1993).German, R. M., “Theory of Thermal Debinding,” Int. J. Powder Met-all., 23, 237 (1987).Hens, K. F., “Process Analysis of Injection Molding with Powder Mix-tures,” Ph.D. Thesis, Rensselaer Polytechnic Institute, New York(1990).McHugh, M. A. and Krukonis, V. J., “Supercritical Fluid Extraction,Principles and Practice,” 2nd ed., Butterworth-Heinemann, Boston,15 (1994).Milke, E. C., Schaeffer, L. and Souza, J. P., “Use of Supercritical Ex-traction Debinding to Obtain Sintering Strontium Ferrite Magnetsby Powder Injection Moulding,” Advanced Powder Technology II,636 (2001).Muthukumaran, P., Gupta, R. B., Sung, H. D., Shim, J. J. and Bae, H. K.,“Dye Solubility in Supercritical Carbon Dioxide. Effect of Hydro-gen Bonding with Cosolvents,” Korean J. Chem. Eng., 16, 111(1999).Nishikawa, E., Wakao, N. and Nakashima, N., “Binder Removal fromCeramic Green Body in the Environment of Supercritical CarbonDioxide with and without Entrainers,” J. Supercrit. Fluids, 4, 265(1991).Noh, M. J., Kim, T. G., Hong, I. K. and Yoo, K. P., “Measurements andCorrelation of Effect of Cosolvents on the Solubilities of ComplexMolecules in Supercritical Carbon Dioxide,” Korean J. Chem. Eng.,12, 48 (1995).Rei, M., Souza, J. P. and Schaeffer, L.,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度硬面堆、藥芯焊線戰(zhàn)略市場規(guī)劃報告
- 年度鐘表與計時儀器競爭策略分析報告
- 二零二五年度特種吊車租賃與運輸服務(wù)合同3篇
- 二零二五版高管勞動合同樣本:股權(quán)激勵與競業(yè)禁止條款3篇
- 二零二五年空調(diào)銷售與節(jié)能產(chǎn)品認證合同3篇
- 2025年度城市綠地養(yǎng)護及植物配置優(yōu)化合同4篇
- 2025年度私人診所與患者之間的遠程醫(yī)療服務(wù)合同
- 2024版簡易協(xié)議管理軟件解決方案一
- 二零二五年度新能源材料采購代理協(xié)議3篇
- 二零二四年太陽能光伏發(fā)電項目合同
- 《向心力》參考課件4
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 【地理】地圖的選擇和應(yīng)用(分層練) 2024-2025學(xué)年七年級地理上冊同步備課系列(人教版)
- 2024年深圳中考數(shù)學(xué)真題及答案
- 土方轉(zhuǎn)運合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(三起)英語三年級上冊
- 智能交通信號燈安裝合同樣本
- 安全生產(chǎn)法律法規(guī)清單(2024年5月版)
- 江蘇省連云港市2023-2024學(xué)年八年級下學(xué)期期末道德與法治試卷(含答案解析)
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試考試歷年高頻考點試題摘選含答案
- JBT 14588-2023 激光加工鏡頭 (正式版)
評論
0/150
提交評論