免費(fèi)預(yù)覽已結(jié)束,剩余26頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班 甘肅張掖 734000)摘要:柯西不等式是一個(gè)非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問(wèn)題迎刃而解。本文在證明不等式,解三角形相關(guān)問(wèn)題,求函數(shù)最值,解方程等問(wèn)題的應(yīng)用方面給出幾個(gè)例子。關(guān)鍵詞:柯西不等式 證明 應(yīng)用 中圖分類號(hào): O178 Identification and application of Cauchy inequalityChen Bo(department of mathematics , Hexi university zhangye gansu 734000)Abstract: Cauchy-inequality is a very important in equation, flexible ingenious application it, can make some comparatively difficult problems easily solved . This text prove inequality, solve triangle relevant problem, is it worth most to ask, the application which solves such questions as the equation ,etc. provides several examples.Keyword:inequation prove application柯西(Cauchy)不等式 等號(hào)當(dāng)且僅當(dāng)或時(shí)成立(k為常數(shù),)現(xiàn)將它的證明介紹如下:證明1:構(gòu)造二次函數(shù) = 恒成立即當(dāng)且僅當(dāng) 即時(shí)等號(hào)成立證明(2)數(shù)學(xué)歸納法 (1)當(dāng)時(shí) 左式= 右式=顯然 左式=右式當(dāng) 時(shí), 右式 右式 僅當(dāng)即 即時(shí)等號(hào)成立故時(shí) 不等式成立 (2)假設(shè)時(shí),不等式成立即 當(dāng) ,k為常數(shù), 或時(shí)等號(hào)成立設(shè) 則 當(dāng) ,k為常數(shù), 或時(shí)等號(hào)成立即 時(shí)不等式成立綜合(1)(2)可知不等式成立柯西不等式是一個(gè)非常重要的不等式,靈活巧妙的應(yīng)用運(yùn)用它,可以使一些較為困難的問(wèn)題迎刃而解,這個(gè)不等式結(jié)構(gòu)和諧,應(yīng)用靈活廣泛,利用柯西不等式可處理以下問(wèn)題:1) 證明相關(guān)命題例1 用柯西不等式推導(dǎo)點(diǎn)到直線的距離公式。 已知點(diǎn)及直線 設(shè)點(diǎn)p是直線上的任意一點(diǎn), 則 (1) (2)點(diǎn)兩點(diǎn)間的距離就是點(diǎn)到直線的距離,求(2)式有最小值,有由(1)(2)得: 即 (3)當(dāng)且僅當(dāng) (3)式取等號(hào) 即點(diǎn)到直線的距離公式即2) 證明不等式例2 已知正數(shù)滿足 證明 證明:利用柯西不等式 又因?yàn)?在此不等式兩邊同乘以2,再加上得:故3) 解三角形的相關(guān)問(wèn)題例3 設(shè)是內(nèi)的一點(diǎn),是到三邊的距離,是外接圓的半徑,證明證明:由柯西不等式得,記為的面積,則故不等式成立。4) 求最值例4已知實(shí)數(shù)滿足, 試求的最值 解:由柯西不等式得,有即由條件可得, 解得,當(dāng)且僅當(dāng) 時(shí)等號(hào)成立,代入時(shí), 時(shí) 5)利用柯西不等式解方程例5在實(shí)數(shù)集內(nèi)解方程解:由柯西不等式,得 又即不等式中只有等號(hào)成立從而由柯西不等式中等號(hào)成立的條件,得它與聯(lián)立,可得 6)用柯西不等式解釋樣本線性相關(guān)系數(shù)在概率論與數(shù)理統(tǒng)計(jì)一書(shū)中,在線性回歸中,有樣本相關(guān)系數(shù),并指出且越接近于1,相關(guān)程度越大,越接近于0,則相關(guān)程度越小。現(xiàn)在可用柯西不等式解釋樣本線性相關(guān)系數(shù)?,F(xiàn)記,則,由柯西不等式有,當(dāng)時(shí),此時(shí),為常數(shù)。點(diǎn) 均在直線上,當(dāng)時(shí),即而為常數(shù)。此時(shí),此時(shí),為常數(shù)點(diǎn)均在直線附近,所以越接近于1,相關(guān)程度越大當(dāng)時(shí),不具備上述特征,從而,找不到合適的常數(shù),使得點(diǎn)都在直線附近。所以,越接近于0,則相關(guān)程度越小。致謝:在本文的寫(xiě)作過(guò)程中,得到了馬統(tǒng)一老師的精心指導(dǎo),在此表示衷心的感謝。 參考文獻(xiàn): 柯西不等式的微小改動(dòng) 數(shù)學(xué)通報(bào) 2002 第三期 柯西不等式與排序不等式 南山 湖南教育出版社 普通高中解析幾何 高等教育出版社1990-年全國(guó)統(tǒng)一考試 數(shù)學(xué)試卷李永新 李德祿 中學(xué)數(shù)學(xué)教
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版學(xué)校游泳池兒童游樂(lè)區(qū)設(shè)計(jì)與施工承包合同示范3篇
- 2025版土地使用權(quán)出讓居間合同(新型合作模式)3篇
- 2025版城市住宅小區(qū)全面滅蟑螂服務(wù)合同4篇
- 2025版土地測(cè)繪保密協(xié)議:保密項(xiàng)目合作與技術(shù)支持合同3篇
- 乳粉產(chǎn)品質(zhì)量法律規(guī)制與合規(guī)考核試卷
- 會(huì)展產(chǎn)業(yè)與數(shù)字經(jīng)濟(jì)的創(chuàng)新結(jié)合考核試卷
- 2025版十五年商業(yè)地產(chǎn)租賃合同范本15篇
- 2025版城市慶典活動(dòng)委托演出合同3篇
- 2025年水土保持設(shè)施驗(yàn)收技術(shù)服務(wù)與生態(tài)修復(fù)實(shí)施合同3篇
- 2025年醫(yī)療設(shè)備使用及維護(hù)管理協(xié)議
- 南通市2025屆高三第一次調(diào)研測(cè)試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國(guó)人民保險(xiǎn)集團(tuán)校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 重癥患者家屬溝通管理制度
- 碳排放管理員 (碳排放核查員) 理論知識(shí)考核要素細(xì)目表三級(jí)
- 2024年河北省中考數(shù)學(xué)試題(含答案解析)
- 小學(xué)二年級(jí)數(shù)學(xué)口算練習(xí)題1000道
- 納布啡在產(chǎn)科及分娩鎮(zhèn)痛的應(yīng)用
- DZ/T 0462.4-2023 礦產(chǎn)資源“三率”指標(biāo)要求 第4部分:銅等12種有色金屬礦產(chǎn)(正式版)
- 化學(xué)-福建省龍巖市2024屆高三下學(xué)期三月教學(xué)質(zhì)量檢測(cè)(一模)試題和答案
- 凸優(yōu)化在經(jīng)濟(jì)學(xué)與金融學(xué)中的應(yīng)用
評(píng)論
0/150
提交評(píng)論