已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第四講 數(shù)學(xué)思維的開拓性一、概述數(shù)學(xué)思維開拓性指的是對(duì)一個(gè)問題能從多方面考慮;對(duì)一個(gè)對(duì)象能從多種角度觀察;對(duì)一個(gè)題目能想出多種不同的解法,即一題多解。“數(shù)學(xué)是一個(gè)有機(jī)的整體,它的各個(gè)部分之間存在概念的親緣關(guān)系。我們?cè)趯W(xué)習(xí)每一分支時(shí),注意了橫向聯(lián)系,把親緣關(guān)系結(jié)成一張網(wǎng),就可覆蓋全部內(nèi)容,使之融會(huì)貫通”,這里所說的橫向聯(lián)系,主要是靠一題多解來完成的。通過用不同的方法解決同一道數(shù)學(xué)題,既可以開拓解題思路,鞏固所學(xué)知識(shí);又可激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和積極性,達(dá)到開發(fā)潛能,發(fā)展智力,提高能力的目的。從而培養(yǎng)創(chuàng)新精神和創(chuàng)造能力。在一題多解的訓(xùn)練中,我們要密切注意每種解法的特點(diǎn),善于發(fā)現(xiàn)解題規(guī)律,從中發(fā)現(xiàn)最有意義的簡捷解法。數(shù)學(xué)思維的開拓性主要體現(xiàn)在:(1) 一題的多種解法例如 已知復(fù)數(shù)滿足,求的最大值。我們可以考慮用下面幾種方法來解決:運(yùn)用復(fù)數(shù)的代數(shù)形式;運(yùn)用復(fù)數(shù)的三角形式;運(yùn)用復(fù)數(shù)的幾何意義;運(yùn)用復(fù)數(shù)模的性質(zhì)(三角不等式);運(yùn)用復(fù)數(shù)的模與共軛復(fù)數(shù)的關(guān)系;(數(shù)形結(jié)合)運(yùn)用復(fù)數(shù)方程表示的幾何圖形,轉(zhuǎn)化為兩圓與有公共點(diǎn)時(shí),的最大值。(2) 一題的多種解釋例如,函數(shù)式可以有以下幾種解釋:可以看成自由落體公式可以看成動(dòng)能公式可以看成熱量公式又如“1”這個(gè)數(shù)字,它可以根據(jù)具體情況變成各種形式,使解題變得簡捷?!?”可以變換為:,等等。1 思維訓(xùn)練實(shí)例例1 已知求證:分析1 用比較法。本題只要證為了同時(shí)利用兩個(gè)已知條件,只需要觀察到兩式相加等于2便不難解決。證法1 所以 分析2 運(yùn)用分析法,從所需證明的不等式出發(fā),運(yùn)用已知的條件、定理和性質(zhì)等,得出正確的結(jié)論。從而證明原結(jié)論正確。分析法其本質(zhì)就是尋找命題成立的充分條件。因此,證明過程必須步步可逆,并注意書寫規(guī)范。證法2 要證 只需證 xMyd圖421O即 因?yàn)?所以只需證 即 因?yàn)樽詈蟮牟坏仁匠闪?,且步步可逆。所以原不等式成立。分? 運(yùn)用綜合法(綜合運(yùn)用不等式的有關(guān)性質(zhì)以及重要公式、定理(主要是平均值不等式)進(jìn)行推理、運(yùn)算,從而達(dá)到證明需求證的不等式成立的方法)證法3 即 分析4 三角換元法:由于已知條件為兩數(shù)平方和等于1的形式,符合三角函數(shù)同角關(guān)系中的平方關(guān)系條件,具有進(jìn)行三角代換的可能,從而可以把原不等式中的代數(shù)運(yùn)算關(guān)系轉(zhuǎn)化為三角函數(shù)運(yùn)算關(guān)系,給證明帶來方便。證法4 可設(shè) 分析5 數(shù)形結(jié)合法:由于條件可看作是以原點(diǎn)為圓心,半徑為1的單位圓,而聯(lián)系到點(diǎn)到直線距離公式,可得下面證法。證法5 (如圖4-2-1)因?yàn)橹本€經(jīng)過圓的圓心O,所以圓上任意一點(diǎn)到直線的距離都小于或等于圓半徑1,即 簡評(píng) 五種證法都是具有代表性的基本方法,也都是應(yīng)該掌握的重要方法。除了證法4、證法5的方法有適應(yīng)條件的限制這種局限外,前三種證法都是好方法??稍诰唧w應(yīng)用過程中,根據(jù)題目的變化的需要適當(dāng)進(jìn)行選擇。例2 如果求證:成等差數(shù)列。分析1 要證,必須有成立才行。此條件應(yīng)從已知條件中得出。故此得到直接的想法是展開已知條件去尋找轉(zhuǎn)換。證法1 故 ,即 成等差數(shù)列。分析2 由于已知條件具有輪換對(duì)稱特點(diǎn),此特點(diǎn)的充分利用就是以換元去減少原式中的字母,從而給轉(zhuǎn)換運(yùn)算帶來便利。證法2 設(shè)則于是,已知條件可化為:所以成等差數(shù)列。分析3 已知條件呈現(xiàn)二次方程判別式的結(jié)構(gòu)特點(diǎn)引人注目,提供了構(gòu)造一個(gè)適合上述條件的二次方程的求解的試探的機(jī)會(huì)。證法3 當(dāng)時(shí),由已知條件知即成等差數(shù)列。當(dāng)時(shí),關(guān)于的一元二次方程:其判別式故方程有等根,顯然1為方程的一個(gè)根,從而方程的兩根均為1,由韋達(dá)定理知 即 成等差數(shù)列。簡評(píng):證法1是常用方法,略嫌呆板,但穩(wěn)妥可靠。證法2簡單明了,是最好的解法,其換元的技巧有較大的參考價(jià)值。證法3引入輔助方程的方法,技巧性強(qiáng),給人以新鮮的感受和啟發(fā)。例3 已知,求的最小值。分析1 雖然所求函數(shù)的結(jié)構(gòu)式具有兩個(gè)字母,但已知條件恰有的關(guān)系式,可用代入法消掉一個(gè)字母,從而轉(zhuǎn)換為普通的二次函數(shù)求最值問題。解法1 設(shè),則二次項(xiàng)系數(shù)為故有最小值。當(dāng)時(shí), 的最小值為分析2 已知的一次式兩邊平方后與所求的二次式有密切關(guān)聯(lián),于是所求的最小值可由等式轉(zhuǎn)換成不等式而求得。解法2 即即 當(dāng)且僅當(dāng)時(shí)取等號(hào)。 的最小值為分析3 配方法是解決求最值問題的一種常用手段,利用已知條件結(jié)合所求式子,配方后得兩個(gè)實(shí)數(shù)平方和的形式,從而達(dá)到求最值的目的。解法3 設(shè) 當(dāng)時(shí),即的最小值為11Oxy圖422分析4 因?yàn)橐阎獥l件和所求函數(shù)式都具有解析幾何常見方程的特點(diǎn),故可得到用解析法求解的啟發(fā)。解法4 如圖422,表示直線表示原點(diǎn)到直線上的點(diǎn)的距離的平方。顯然其中以原點(diǎn)到直線的距離最短。此時(shí),即所以的最小值為注 如果設(shè)則問題還可轉(zhuǎn)化為直線與圓有交點(diǎn)時(shí),半徑的最小值。簡評(píng) 幾種解法都有特點(diǎn)和代表性。解法1是基本方法,解法2、3、4都緊緊地抓住題設(shè)條件的特點(diǎn),與相關(guān)知識(shí)聯(lián)系起來,所以具有靈巧簡捷的優(yōu)點(diǎn),特別是解法4,形象直觀,值得效仿。例4 設(shè)求證:分析1 由已知條件為實(shí)數(shù)這一特點(diǎn),可提供設(shè)實(shí)系數(shù)二次方程的可能,在該二次方程有兩個(gè)虛根的條件下,它們是一對(duì)共軛虛根,運(yùn)用韋達(dá)定理可以探求證題途徑。證法1 設(shè)當(dāng)時(shí),可得與條件不合。于是有 該方程有一對(duì)共軛虛根,設(shè)為,于是又由韋達(dá)定理知 分析2 由于實(shí)數(shù)的共軛復(fù)數(shù)仍然是這個(gè)實(shí)數(shù),利用這一關(guān)系可以建立復(fù)數(shù)方程,注意到這一重要性質(zhì),即可求出的值。證法2 設(shè)當(dāng)時(shí),可得與條件不合,則有 ,即 但 而 即分析3 因?yàn)閷?shí)數(shù)的倒數(shù)仍為實(shí)數(shù),若對(duì)原式取倒數(shù),可變換化簡為易于進(jìn)行運(yùn)算的形式。再運(yùn)用共軛復(fù)數(shù)的性質(zhì),建立復(fù)數(shù)方程,具有更加簡捷的特點(diǎn)。證法3 即從而必有簡評(píng) 設(shè)出復(fù)數(shù)的代數(shù)形式或三角形式,代入已知條件化簡求證,一般也能夠證明,它是解決復(fù)數(shù)問題的基本方法。但這些方法通常運(yùn)算量大,較繁?,F(xiàn)在的三種證法都應(yīng)用復(fù)數(shù)的性質(zhì)去證,技巧性較強(qiáng),思路都建立在方程的觀點(diǎn)上,這是需要體會(huì)的關(guān)鍵之處。證法3利用倒數(shù)的變換,十分巧妙是最好的方法。例5 由圓外一點(diǎn)引圓的割線交圓于兩點(diǎn),求弦的中點(diǎn)的軌跡方程。分析1 (直接法)根據(jù)題設(shè)條件列出幾何等式,運(yùn)用解析幾何基本公式轉(zhuǎn)化為代數(shù)等式,從而求出曲線方程。這里考慮在圓中有關(guān)弦中點(diǎn)的一些性質(zhì),圓心和弦中點(diǎn)的連線垂直于弦,可得下面解法。解法1 如圖423,設(shè)弦的中點(diǎn)的坐標(biāo)為,連接,則,在中,由兩點(diǎn)間的距離公式和勾股定理有整理,得 其中圖423PMBAOyx分析2 (定義法)根據(jù)題設(shè)條件,判斷并確定軌跡的曲線類型,運(yùn)用待定系數(shù)法求出曲線方程。解法2 因?yàn)槭堑闹悬c(diǎn),所以,所以點(diǎn)的軌跡是以為直徑的圓,圓心為,半徑為該圓的方程為:化簡,得 其中分析3 (交軌法)將問題轉(zhuǎn)化為求兩直線的交點(diǎn)軌跡問題。因?yàn)閯?dòng)點(diǎn)可看作直線與割線的交點(diǎn),而由于它們的垂直關(guān)系,從而獲得解法。解法3 設(shè)過點(diǎn)的割線的斜率為則過點(diǎn)的割線方程為:.且過原點(diǎn),的方程為 這兩條直線的交點(diǎn)就是點(diǎn)的軌跡。兩方程相乘消去化簡,得:其中分析4 (參數(shù)法)將動(dòng)點(diǎn)坐標(biāo)表示成某一中間變量(參數(shù))的函數(shù),再設(shè)法消去參數(shù)。由于動(dòng)點(diǎn)隨直線的斜率變化而發(fā)生變化,所以動(dòng)點(diǎn)的坐標(biāo)是直線斜率的函數(shù),從而可得如下解法。解法4 設(shè)過點(diǎn)的割線方程為:它與圓的兩個(gè)交點(diǎn)為,的中點(diǎn)為.解方程組 利用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,可求得點(diǎn)的軌跡方程為:其中分析5 (代點(diǎn)法)根據(jù)曲線和方程的對(duì)應(yīng)關(guān)系:點(diǎn)在曲線上則點(diǎn)的坐標(biāo)滿足方程。設(shè)而不求,代點(diǎn)運(yùn)算。從整體的角度看待問題。這里由于中點(diǎn)的坐標(biāo)與兩交點(diǎn)通過中點(diǎn)公式聯(lián)系起來,又點(diǎn)構(gòu)成4點(diǎn)共線的和諧關(guān)系,根據(jù)它們的斜率相等,可求得軌跡方程。解法5 設(shè)則兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教新起點(diǎn)選修1歷史上冊(cè)月考試卷含答案
- 2025年蘇人新版七年級(jí)生物上冊(cè)月考試卷含答案
- 2025年北師大版八年級(jí)生物下冊(cè)月考試卷含答案
- 二零二五年度木門及木飾面定制化生產(chǎn)與安裝服務(wù)合同4篇
- 二零二五版親子閱讀活動(dòng)組織服務(wù)合同4篇
- 2025年航空航天產(chǎn)業(yè)投資入股分紅合同4篇
- 二零二五年度智能家居安裝服務(wù)分包工程勞務(wù)合同4篇
- 2025版木作裝飾清包施工合同示范文本8篇
- 2024版公司車輛租賃合同
- 二零二五年度路演展示廳綠色環(huán)保設(shè)施租賃合同4篇
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 人教版(2025新版)七年級(jí)下冊(cè)英語:寒假課內(nèi)預(yù)習(xí)重點(diǎn)知識(shí)默寫練習(xí)
- 2024年食品行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)文本
- 全屋整裝售后保修合同模板
- 高中生物學(xué)科學(xué)推理能力測(cè)試
- GB/T 44423-2024近紅外腦功能康復(fù)評(píng)估設(shè)備通用要求
- 2024-2030年中國減肥行業(yè)市場發(fā)展分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 運(yùn)動(dòng)技能學(xué)習(xí)
- 2024年中考英語專項(xiàng)復(fù)習(xí):傳統(tǒng)文化的魅力(閱讀理解+完型填空+書面表達(dá))(含答案)
- 音樂培訓(xùn)合同與培訓(xùn)機(jī)構(gòu)的合作
評(píng)論
0/150
提交評(píng)論