版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、章序名稱第2章靜態(tài)電磁場1 :靜電場2.1基本方程與場的特性授課學(xué)時(shí)1學(xué)時(shí)教材分析本早的靜電場是課程的第一部分內(nèi)谷。在這部分內(nèi)谷的學(xué)習(xí)中,學(xué)生第一 次以矢量分析和數(shù)學(xué)物理方法的觀點(diǎn)和方法來認(rèn)識(shí)和分析一種矢量場,這種方 法將貫穿整個(gè)課程的始終。因此,很好的理解、掌握靜電場的基本內(nèi)容,是掌 握整個(gè)課程內(nèi)容的基礎(chǔ)。教材米用演繹法進(jìn)行編排,本節(jié)的先知內(nèi)容包括1.1節(jié)涉及到的電荷及電荷分布、電場強(qiáng)度等基本概念,以及第 1章涉及的電磁場矢量分析、場論的數(shù) 學(xué)基礎(chǔ)、麥克斯韋方程組等宏觀電磁場分析基本理論,因此在講述時(shí)需要對這 些內(nèi)容進(jìn)行回顧和強(qiáng)調(diào)。本節(jié)教材內(nèi)容適中,所編排的例題 2-1和2-2主要作用是通過
2、實(shí)例強(qiáng)化學(xué) 生對散度、旋度計(jì)算中涉及的坐標(biāo)系、標(biāo)量、矢量等概念的理解,球坐標(biāo)系下 散度和旋度表達(dá)式不需學(xué)生掌握。學(xué)生分析學(xué)生前面學(xué)過物理電磁學(xué)的相關(guān)知識(shí),因此對積分形式的麥克斯韋方程容 易理解,當(dāng)時(shí)的學(xué)習(xí)脈絡(luò)是從實(shí)驗(yàn)定律出發(fā)先特殊再一般的歸納方法,最后導(dǎo) 出麥克斯韋方程。而本書是先麥克斯韋方程的演繹法,學(xué)生需要先理解。學(xué)生對第一章涉及的矢量分析、場論基礎(chǔ)學(xué)習(xí)理解會(huì)比較困難,包括積分 形式和微分形式的適用范圍、點(diǎn)乘和叉乘的概念、點(diǎn)乘和梯度算子的區(qū)別等, 因此本節(jié)需要繼續(xù)對相關(guān)內(nèi)容進(jìn)行重復(fù)和強(qiáng)化,教學(xué)目標(biāo)知識(shí)目標(biāo):1 理解靜態(tài)電磁場、靜電場的定義。2. 掌握微分形式的靜電場基本方程,以及靜電場的無
3、旋場、有散場特性。3. 掌握真空中的高斯定理能力目標(biāo):1 能夠用真空中的高斯定理,針對簡單問題,由E計(jì)算p。教學(xué)重點(diǎn)1.靜電場中電何源量與電場分布的對應(yīng)關(guān)系2 真空中的高斯定理。教學(xué)難點(diǎn)通過本節(jié)強(qiáng)化學(xué)生對場論中散度、旋度等概念的理解教學(xué)手段板書配合多媒體教學(xué)方法啟發(fā)式提問、講解、例題強(qiáng)化教學(xué)用具無教學(xué)內(nèi)容提要備注第2章靜態(tài)電磁場1 :靜電場10分鐘靜電場定義:由相對于觀察者為靜止的、且量值不隨時(shí)間變化的電荷所激發(fā)的電場。注意:開篇本書基本脈絡(luò):對本書的整個(gè)這本書的脈絡(luò)是演繹法,米用第1章(以數(shù)學(xué)物理方法為研究手段)研究脈絡(luò)給出的電磁場矢量分析、場論的數(shù)學(xué)基礎(chǔ)、麥克斯韋方程組等宏觀電磁場分進(jìn)行講
4、解析基本理論,對電磁場分類中的取簡單的一種類型 -靜態(tài)電場進(jìn)仃分析。(注意和前一演繹法:(補(bǔ)充)節(jié)麥克斯韋方演繹法是與歸納法相反的一種研究方法,是從既有的普遍性結(jié)論或一般 性事理,推導(dǎo)出個(gè)別性結(jié)論的一種方法,即由較大范圍,逐步縮小到所需的 特定范圍。它是從一般到特殊,由定義、根本規(guī)律等出發(fā)一步步遞推,邏輯 嚴(yán)密結(jié)論可靠,且能體現(xiàn)事物的特性。程的結(jié)合)演繹法的基本形式是三段論式,它包括:(1)大前提,是已知的一般原理或一般性假設(shè);(2)小前提,是關(guān)于所研究的特殊場合或個(gè)別事實(shí)的判斷,小前提應(yīng)與大前提有關(guān);(3)結(jié)論,是從一般已知的原理(或假設(shè))推出的,對于特殊場合或個(gè)別事實(shí)作出的新判斷。2.1基
5、本方程與場的特性2.1.1 靜態(tài)電磁場10分鐘按源量和場量的性質(zhì)進(jìn)行分類。1、靜態(tài)電磁場定義:電磁場中的源量不隨時(shí)間而變化,這時(shí)場中的場量也注意:引入將不隨著時(shí)間而變化,而僅僅是空間坐標(biāo)的函數(shù)。電磁分離提問:源量和場量都有哪些?(源量為電荷或電流,場量為 E和B) 回顧:微分形式和積分形式的不冋-積分形式反映場量在某一大尺度空間 的特性;微分形式能精確反映場量在空間任一點(diǎn)的特性,即反映細(xì)節(jié)。的概念。與出標(biāo)準(zhǔn)麥克斯韋方程:(只給出微分形式,積分形式學(xué)生自己看 ) vVVDH Jc -D-;VE BvtB 0VD因?yàn)閳隽颗c時(shí)間無關(guān),因此上式中場量關(guān)于時(shí)間的偏導(dǎo)數(shù)為0,方程變?yōu)椋篤 VH Jc;VD
6、 V B V e O方程表明靜態(tài)電磁場的電場和磁場沒有相互耦合關(guān)系,因此可以在單一 電場或磁場效應(yīng)卜分別進(jìn)行分析和討論。2、靜態(tài)電場:由相對于觀察者靜止的且電量不隨時(shí)間變化的電荷產(chǎn)生的電場;下一章還將討論由恒定電流激發(fā)的電場效應(yīng)。2.1.2靜電場的基本方程1. 靜電場的基本方程(微分形式):vE 0vD2. 媒質(zhì)的構(gòu)成方程為:v vD E在理想的真空狀態(tài)介電常數(shù) =0回顧:亥姆霍茲定理指出,無界空間矢量場唯一地由其散度和旋度所確定, 因此場的散度和旋度是研究場特性的首要問題。(本書討論的總體脈絡(luò)就是分析場的散度和旋度特性?。┯苫痉匠毯蜕⒍?旋度定義,顯然靜電場是有散(有源)、無旋場。2.1.
7、3真空中的高斯定理-靜電場的有散性5分鐘注意:強(qiáng)調(diào)通過散度和旋度特性分析場的方法。15分鐘1.真空中的高斯定理-積分形式注意:可分別討論定理的微分形式和積分形式可以利用此公式求取電場強(qiáng)度場方程的微分形式在不同媒質(zhì)的分界面上不再適用,而場方程的積分形式在這些地方依然是適用的。dVV Vqv v 1 n蜒E ?dS S E dS qiS000 i 1式中n是閉合面包圍的點(diǎn)電荷總數(shù)。定理表明:真空中,穿過任一閉合曲面 S的電場強(qiáng)度通量,等于該曲面 包圍的電量除以真空介電常數(shù)。該定理建立了靜電場中場原和場量的關(guān)系。積分形式表征了電場強(qiáng)度在 某一大范圍尺度內(nèi)的場空間中特性。2.真空中的高斯定理-微分形式
8、在靜電場的微分基本方程中代入D E、= 0,有:微分形式反映了場中任意一點(diǎn)的特性。公式表明:真空中,電場強(qiáng)度在任一場點(diǎn)的散度等于該點(diǎn)的電荷體密度 除以真空介電常數(shù)。顯然靜電場是有散場。圖1散度與場源的關(guān)系解釋:上圖表明:靜電場是有散(有源)場。若場中某點(diǎn) ?E0,則 0(正 電荷),該點(diǎn)電力線向外發(fā)散,且為 源”的所在處;若某點(diǎn) ?E0,則 0 (負(fù)電荷),電力線從周圍向該點(diǎn)匯集,是 匯”的所在處;若某點(diǎn)的 ?E=0, 則 =0(無電荷),電力線既不自該點(diǎn)發(fā)出,也不向該點(diǎn)匯集,而是通過該點(diǎn), 因此該點(diǎn)不存在場源。例2-1已知真空中在半徑為a的球形空間內(nèi)分布有呈球?qū)ΨQ形態(tài)的電荷,它在其球形分布區(qū)
9、域內(nèi)外產(chǎn)生的空間電場分別為E(V)丄壯0 r a)和 Ev(V)2 02嚴(yán)01a)。試求該電荷的分布解:2.1.4靜態(tài)場的無旋性靜電場梅克斯韋方程組中的:EE 0表明靜電場的旋度處處為零,靜電場為無旋場,其電力線不是閉合曲線 對右圖閉合曲線作曲線積分,并應(yīng)用斯托克斯定理,得:圖2電場力作功與路徑無關(guān)v vv vv v?E?dlE?dlE?dl(E)?dS 0AmBnAAmBBnASv vv vv vE?dlE?dlE?dlAmBBnAAnB表明在靜電場屮,電場力作功與路徑無關(guān),僅取決于起點(diǎn)和終點(diǎn)的位置是保守場,或位場。例2-2求例2-1所給定靜電場的旋度解:注意:此例題 主要目的是 通過實(shí)例強(qiáng)
10、 化學(xué)生對散 度計(jì)算中涉 及的坐標(biāo)系、 標(biāo)量矢量等 概念的理解5分鐘靜電場是 保守力場注意:此例題主要目的是通過實(shí)例強(qiáng)化學(xué)生對旋度概念理解5分鐘2.1.5 本節(jié)小結(jié)1. 靜態(tài)電磁場、靜電場的定義。2. 靜電場的基本方程,靜電場的無旋場、有散場特性。課時(shí)分配節(jié)序內(nèi)容時(shí)間2.1第2章概述10分鐘2.1.1靜態(tài)電磁場10分鐘2.1.2靜態(tài)場的基本方程5分鐘2.1.3靜態(tài)場的散度15分鐘2.1.4靜態(tài)場的無旋性5分鐘2.1.5本節(jié)重點(diǎn)內(nèi)容總結(jié)5分鐘作 業(yè) 思 考 題完成方式書面版() 電子版()提交時(shí)間實(shí) 踐 訓(xùn) 練拓 展 學(xué) 習(xí)必 讀 書 目教 學(xué) 后 記章序名稱第2章靜態(tài)電磁場1 :靜電場2.2自
11、由空間的電場授課學(xué)時(shí)1學(xué)時(shí)教材分析本節(jié)教材內(nèi)容量較大,并編排了大量的例題,要控制在一個(gè)學(xué)時(shí)內(nèi)完成必 須對講授內(nèi)容進(jìn)行刪減,并只保留少量的例題。求取靜電場E分布的方法有兩種,其中的“直接法”由于涉及到矢量積分, 因此只能對一些簡單問題進(jìn)行求解;而先求取電位分布、再利用求解梯度的微 分運(yùn)算求取E的“間接法”,由于涉及的積分運(yùn)算是標(biāo)量積分,遠(yuǎn)比直接法簡 單,這種方法的應(yīng)用范圍更加廣泛。因此本節(jié)以后一種方法為講課重點(diǎn)。例題安排上“直接法”部分由學(xué)生自學(xué),由于時(shí)間關(guān)系只安排例 2-6,原因 是電偶極子后面要用到。學(xué)生分析本節(jié)2.2.2中直接計(jì)算E中有關(guān)點(diǎn)電荷部分的結(jié)論與此前電路理論中的相 關(guān)內(nèi)容有 直的
12、對應(yīng)關(guān)糸,只疋在電路理論課中疋從庫侖試驗(yàn)定律出發(fā),先定 義的E,再定義的札講課時(shí)應(yīng)在相關(guān)地方進(jìn)行講解,增強(qiáng)學(xué)生的理解力。例題和習(xí)題中多處用到微積分的相關(guān)知識(shí)。教學(xué)目標(biāo)知識(shí)目標(biāo):1 掌握自由空間靜電場中E和相互轉(zhuǎn)化的關(guān)系式。2理解電場強(qiáng)度的直接計(jì)算方法。3理解電位的概念,掌握電位的計(jì)算方法,掌握點(diǎn)電荷電位計(jì)算公式。4理解電場線和電位線的概念,能看懂圖。能力目標(biāo):1 能夠解決一些通過計(jì)算 來求解E的典型問題。教學(xué)重點(diǎn)1 自由空間靜電場中E和相互轉(zhuǎn)化的關(guān)系式2 通過求解電位來求解E的計(jì)算方法教學(xué)難點(diǎn)判定電場強(qiáng)度E和電位的關(guān)系并進(jìn)行計(jì)算教學(xué)手段板書配合多媒體教學(xué)方法啟發(fā)式提問、講解、例題強(qiáng)化教學(xué)用具無
13、教學(xué)內(nèi)容提要備注概述5分鐘自由空間:=0本節(jié)研究的是自由空間中已知源量作用下,基本場量電場強(qiáng)度的空間分注意:強(qiáng)調(diào)布(注意:場量分布與時(shí)間無關(guān))。問題研究回顧:對于像靜電場一樣的位場,可以引入 標(biāo)量電位函數(shù)作為輔助場量來描過程的由述靜電場的特性,因此本節(jié)也將給出(r)的求解問題。淺入深221自由空間中的E和15分鐘1.電位的引入根據(jù)亥姆霍茲定理-EA注意:簡述 推導(dǎo)過程。v v/V1E(r )(r)/ V , V/dV 4 n V | r r |v vv v1E(r )A(r)- v |v v/dV 4 n V | r r |代入 ?首 一、E 0可以得出:(圖見PPT0v1(v)(r)-dV4
14、 n o V |r r |注意:結(jié)合推 導(dǎo)強(qiáng)化學(xué)生 對帶點(diǎn)的 和不帶點(diǎn) 區(qū)別的理解: 有?的是散度,對矢量操作、結(jié)果為標(biāo)V vA(v)0量;無?的 是梯度,對標(biāo),v因此有:E量操作、結(jié)果 為矢量式中,稱為標(biāo)量函數(shù)(r)為靜電場的標(biāo)量電位函數(shù),簡稱電位。上式表明,自由空間中任一點(diǎn)靜電場的電場強(qiáng)度 E等于該點(diǎn)電位梯度的 負(fù)值。由上式可見,若已知電荷分布函數(shù)(v),可以求出空間任一點(diǎn)的電位(r),然后利用E可計(jì)算該點(diǎn)的電場強(qiáng)度。式中負(fù)號(hào)表示電場強(qiáng)度的方向從注意:結(jié)論與1.3.3中“無旋場一定可【、1豐出以表示為高電位指向低電位。個(gè)標(biāo)量場的在靜電場中,任意一點(diǎn)的電場強(qiáng)度 E的方向總是沿著電位減少的最快
15、方 向,其大小等于電位的最大變化率。在直角坐標(biāo)系中:梯度” 一致!vVvvE一ex ey ezxyz2.由E求的關(guān)系式靜電場是位場。在靜電場中,某點(diǎn) P處的電位疋義為:把單位正電何從P點(diǎn)移到參考點(diǎn)Q的過程中靜電力所作的功。若正試驗(yàn)電荷 q從P點(diǎn)移到Q 點(diǎn)的過程中電場力作功為 W:Q vW q p E di將E代入上式,且 qg(,貝QW q (r P 則P、Q兩點(diǎn)間電位為:Q)dl qp嚴(yán)q( pPQ(電位疋義 與電路理論 中定義一致) 注意:強(qiáng)調(diào)電 位是相對的, 建立電位參考點(diǎn)概念1注意:高斯定 理能夠計(jì)算 E分布的情況更有限,因?yàn)樗鼪]給出E的直接表達(dá)式2.2.2 場分布-基于場量E的分布此
16、部分主要靜電場中,計(jì)算 通過給定的電荷密度求出電場強(qiáng)度 的方法。1.已知體電荷密度v5分鐘電場強(qiáng)度:Ev注意:直接 纟合出結(jié)論, 簡化推導(dǎo)過程dVV 40RdV1v1v1Rex x Reyy Rv4 o|v v|dVv1zz RvvvReRz z ezR3R20V 41vv3 x x exy yeyR注意:簡要講解例2-3采代入前式,得4R2 eRdV0 V用已知電荷 分布計(jì)算E 的方法,例2-4直接采 用高斯定理計(jì)算E上式正表明靜電場中兩點(diǎn)間電位的定義。電位是相對的 P點(diǎn)處的電位為:Q v V、E dl (單位:V當(dāng)電荷不延伸到無窮遠(yuǎn)處時(shí),一般把電位參考點(diǎn)Q選在無限遠(yuǎn)處,這將給電位的計(jì)算帶來
17、很大的方便。此時(shí),任意P點(diǎn)的電位為v vP E dlP p上式表明,由E可以求取。3靜電場特性的進(jìn)一步認(rèn)識(shí)(結(jié)合 2.1.1的高斯定理內(nèi)容):(1) 高斯定律中的電量q應(yīng)理解為封閉面S所包圍的全部正負(fù)電荷的 總和。(2) 靜電場的電場線是不可能閉合的,而且也不可能相交。(3) 任意兩點(diǎn)之間電場強(qiáng)度 E的線積分與路徑無關(guān)。真空中的靜電場 和重力場一樣,它是一種保守場。(4) 已知電荷分布的情況下,可以利用高斯定理計(jì)算電場強(qiáng)度,或者可 以通過電位求出電場強(qiáng)度,或者直接根據(jù)電荷分布計(jì)算電場強(qiáng)度 等三種計(jì)算 靜電場的方法。2.已知面電荷密度 v電場強(qiáng)度:eRdS3.已知線電荷密度電場強(qiáng)度:4.已知點(diǎn)電
18、荷:14 0 R2q r veR與庫倫定理一致。注意:直接運(yùn)用真空中的高斯定理求取電場強(qiáng)度分布僅適用于一些具有特定體電荷對稱性的靜電場問題一場強(qiáng)方向必須知道,并能夠構(gòu)造高斯面。2.2.3場分布:基于位函數(shù)的分析回顧:運(yùn)用前一節(jié)采用求取E分布的方法屬于直接法,由于涉及到矢量積分, 因此只能對一些簡單問題進(jìn)行求解。引入:本節(jié)介紹的是求取E分布另一種方法-間接法。由源量(電荷分布)求取電位分布后,再利用求解梯度的微分運(yùn)算求取 E,由于求取電位涉及的積分運(yùn)算是標(biāo)量積分,遠(yuǎn)比直接應(yīng)用矢量積分計(jì)算 E 簡單得多,因此這種方法的應(yīng)用范圍更加廣泛,這也正是引入位函數(shù)的意義 所在。給定自由空間中,體電荷分布產(chǎn)生
19、的電位:20分鐘注意:此部分為重點(diǎn)內(nèi)容給定自由空間中,v 1 r dV4 0 V R線電荷分布產(chǎn)生的電位:給定自由空間中,v 1r 40 i面電荷分布產(chǎn)生的電位:Idl Rv 1 r ds40 S R對于無界自由空間中位于坐標(biāo)原點(diǎn)的點(diǎn)電荷產(chǎn)生的電位:v q4rp當(dāng)空間中同時(shí)有n個(gè)點(diǎn)電荷時(shí),場點(diǎn)的電位等于各點(diǎn)電荷qi在該點(diǎn)產(chǎn)生的電位的標(biāo)量和,即1 n(r) 440 k 11 n qk40 k 1 Rk注意:介紹電偶極子的重要性求解E的第二個(gè)方法:先求電位,再利用EVr求電場強(qiáng)度。例2-6求電偶極子遠(yuǎn)區(qū)的電場強(qiáng)度與電位分布解:兩個(gè)相距很近的等量異號(hào)點(diǎn) 電荷組成的系統(tǒng)。電偶極子的特征用電偶極距 P=
20、lq描述,其中I是兩點(diǎn)電荷之間的距離,I和P的方向規(guī)定由一q指向+ q 電偶極子在外 電場中受力矩作用而旋轉(zhuǎn),使其電 偶極矩轉(zhuǎn)向外電場方向。電偶 極矩就是電偶極子在單位外電場下可能受到的最大力矩,故簡稱電矩。如果外 電場不均勻,除受力矩外,電偶極子還要受到平移作用。電偶極子產(chǎn)生的電場 是構(gòu)成它的正、負(fù)點(diǎn)電荷產(chǎn)生的電場之和。有一類電介質(zhì)分子的正、負(fù)電荷中心不重合,形成電偶極子,稱為有極分子; 另一類電介質(zhì)分子的正、負(fù)電荷中心重合,稱為 無極分子,但在外電場作用下 會(huì)相對位移,也形成電偶極子。在電介質(zhì)理論和 原子物理學(xué)中,電偶極子是很 重要的模型。應(yīng)用有偶極子 天線。5分鐘2.2.4電場線和等位面
21、(線)注意:講解 概念為主, 不必展開法拉第提出電場線的概念。是一種假象的矢量線,有助于對電磁場空間 分布特征的理解。1.E線曲線上每一點(diǎn)切線方向應(yīng)與該點(diǎn)電場強(qiáng)度 E的方向一致,若dV表示E 線上P點(diǎn)處得元長度線,則有:v vE dl 0稱為E線的微分方程。 在直角坐標(biāo)系中:Ex Ey Ezdx dy dz微分方程的解即為電力線 E的方程。在靜電場中電位相等的點(diǎn)的曲面稱為等位面,即等位線(面)方程(X, y, z) C當(dāng)取不同的C值時(shí),可得到不同的等位線(面)。 性質(zhì):?E線不能相交;?E線起始于正電荷,終止于負(fù)電荷;?E線愈密處,場強(qiáng)愈大;? E線與等電位線(面)正交; 例2-7畫出電偶極子
22、的等電位線和電場線圖 電偶極子的等電位線 (虛線)和電場線(實(shí)線)2.2.5 本節(jié)小結(jié)1 掌握自由空間靜電場中E和相互轉(zhuǎn)化的關(guān)系式。2 理解電場強(qiáng)度的直接計(jì)算方法。3理解電位的概念,掌握電位的計(jì)算方法,掌握點(diǎn)電荷電位計(jì)算公式。 4理解電場線和電位線的概念,能看懂圖。課時(shí)分配節(jié)序內(nèi)容時(shí)間2.22.2概述5分鐘2.2.1自由空間中的E和10分鐘2.2.2電場強(qiáng)度E的表達(dá)式5分鐘2.2.3基于位函數(shù)的分析20分鐘2.2.4電場線和等位面(線)5分鐘2.2.5本節(jié)重點(diǎn)內(nèi)容總結(jié)5分鐘作 業(yè) 思 考 題2-3、2-5、2-6、2-8、2-9、2-10完成方式書面版(2) 電子版()提交時(shí)間一周后實(shí) 踐 訓(xùn)
23、 練拓 展 學(xué) 習(xí)必 讀 書 目教 學(xué) 后 記(可考慮適當(dāng)壓縮2.1占用時(shí)間,多留給2.2)章序名稱第2章靜態(tài)電磁場1 :靜電場2.3導(dǎo)體和電介質(zhì) 2.4 電介質(zhì)中的電場(一)授課學(xué)時(shí)1學(xué)時(shí)教材分析2.3中導(dǎo)體相關(guān)性質(zhì)在以往的電磁學(xué)課程中已經(jīng)學(xué)過, 因此重點(diǎn)在電介質(zhì)的 特性介紹,其中電偶極子相關(guān)分析與 2.2的例題結(jié)論有關(guān),由于2.3的內(nèi)容偏 少,又沒有例題,因此安排0.5次課。2.4內(nèi)容量較大,安排1.5次課,例題需要講解,本次課的內(nèi)容很多結(jié)論已 在大學(xué)電磁學(xué)中學(xué)過。學(xué)生分析2.3節(jié)導(dǎo)體和電介質(zhì)多數(shù)內(nèi)容是復(fù)習(xí)電磁學(xué)課程,重點(diǎn)講述其中和電磁學(xué)不同的部分,即利用電偶極子特性作為數(shù)學(xué)工具推導(dǎo)出這些
24、結(jié)論一電磁學(xué)和電磁 場得到結(jié)論的過程不同,但結(jié)果相同。重點(diǎn)在電介質(zhì)的特性介紹。教學(xué)目標(biāo)知識(shí)目標(biāo):1. 掌握靜電場中的導(dǎo)體和電介質(zhì)的特點(diǎn)2. 了解電偶極子的電場,極化強(qiáng)度。3. 掌握電介質(zhì)中高斯定理微分形式的物理意義及應(yīng)用 能力目標(biāo):1.能夠利用電介質(zhì)中的高斯定理求解典型場分析問題教學(xué)重點(diǎn)1. 電介質(zhì)的極化現(xiàn)象2. 電介質(zhì)極化強(qiáng)度矢量;極化電荷面密度和體密度3. 電介質(zhì)中高斯定理微分形式的物理意義及應(yīng)用教學(xué)難點(diǎn)1.束縛電荷極化電位公式推導(dǎo)教學(xué)手段板書配合多媒體教學(xué)方法啟發(fā)式提問、講解、例題強(qiáng)化教學(xué)用具無教學(xué)內(nèi)容提要備注2.3導(dǎo)體和電介質(zhì)概述回顧:在上一節(jié)課為討論方便,將場空間典型化為理想的無界自
25、由空間,即 =0。但實(shí)際工程中實(shí)體媒質(zhì)總是存在的,因此場與媒質(zhì)之間必然發(fā)生相互 作用。本節(jié)就是要討論介質(zhì)是如何影響靜電場特性的。根據(jù)媒質(zhì)在靜電場中的特性,可以分為 2大類:導(dǎo)電體(導(dǎo)體)和絕緣 體(電介質(zhì))。2.3.1靜電場中的導(dǎo)體回顧:導(dǎo)體的靜電感應(yīng)現(xiàn)象導(dǎo)體中電荷的重新分布導(dǎo)致在導(dǎo)體內(nèi)部形成一個(gè)與原有電場相互抵消 的附加電場,最終使導(dǎo)體處于靜電平衡狀態(tài)。 總結(jié):靜電場中的導(dǎo)體具有如下基本特征1)導(dǎo)體內(nèi)電場強(qiáng)度E為零,靜電平衡;2)導(dǎo)體是等位體,導(dǎo)體表面為等位面;3)電場強(qiáng)度垂直于導(dǎo)體表面;4)電荷以面密度形式分布在導(dǎo)體表面,其分布密度取決于導(dǎo)體表面的 曲率。應(yīng)用:導(dǎo)體尖端放電效應(yīng)的避雷針。2
26、.3.2靜電場中的電介質(zhì)-電解質(zhì)的極化理想電介質(zhì)是電導(dǎo)率為0的理想絕緣材料。1、極化現(xiàn)象束縛電荷在外電場作用下的響應(yīng)。含位移極化(無極分子電解質(zhì))和取 向極化(有機(jī)分子電解質(zhì))。無論哪種極化現(xiàn)象,其結(jié)果均使束縛電荷的分 布發(fā)生變化,導(dǎo)致極化電場。極化電場與外電場相疊加,便形成有電介質(zhì)存 在時(shí)的合成電場。有極性分子5分鐘5分鐘注意:此部分結(jié)論電磁學(xué)學(xué)過,簡單講解(理想導(dǎo)體)15分鐘注意:材料 分為兩種,一 種是正負(fù)電 荷中心重合, 一種不重合圖電介質(zhì)的極化0 0 Q G 0 亠E注意:P是電矩體密度,回顧前面的例題2、電極化強(qiáng)度矢量P回顧:前面講過單對電偶極子的電偶極矩 p(簡稱電矩)定義為p
27、qd o 電極化強(qiáng)度矢量是為表征介質(zhì)極化的程度。電極化強(qiáng)度矢量定義:極化后形成的每單位體積內(nèi)電偶極矩的矢量和,即vP2P I 血 0和-mn2 0時(shí)B2nsi nmny當(dāng)=-mn2 0 時(shí)X(X)=A10+A20X;Y(y)=Bi0+B20yX(X)=AlnChmnX + A2nshmnx;Y(y)=BincosmnyX(x)=A1n cosmnx + A2n sinmnx ; Y(y)=B1n chmny +B2n shmny當(dāng)mn取不同值時(shí),上述解的線性組合便構(gòu)成了拉普拉斯方程的通解,即x, yA(nchmnx A2nshmnx B1 n cos mn y B2nsinmnyn 1A(n cosmnx A?n sinmn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育賽事風(fēng)險(xiǎn)分級管控管理制度
- 體育行業(yè)廉潔自律教育實(shí)施方案
- 智慧醫(yī)院智能導(dǎo)診系統(tǒng)方案
- 大學(xué)生普通話能力提升方案
- 房地產(chǎn)行業(yè)人事制度與流程
- 管理糖尿病的重要原則
- 藝術(shù)文化活動(dòng)管理制度
- 邢臺(tái)學(xué)院《數(shù)據(jù)結(jié)構(gòu)實(shí)踐》2021-2022學(xué)年期末試卷
- 《扁平足和合并近端跖腱膜炎所致跟痛癥相關(guān)性分析》
- 邢臺(tái)學(xué)院《模型制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 剖宮產(chǎn)術(shù)后再次妊娠陰道分娩管理的專家共識(shí)
- 鐵路工程擋土墻加固施工平安方案
- 最全的俄語教學(xué)課件
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
- 再生資源回收利用體系建設(shè)項(xiàng)目方案
- 循證護(hù)理學(xué)(理論部分)智慧樹知到答案章節(jié)測試2023年復(fù)旦大學(xué)
- 醫(yī)院開展老年友善醫(yī)療機(jī)構(gòu)建設(shè)工作總結(jié)
- 馬克思主義基本原理概論智慧樹知到答案章節(jié)測試2023年泰山學(xué)院
- 餐飲檔口和門店消防安全培訓(xùn)
- 噴錫培訓(xùn)教程
- 幼兒園衛(wèi)生知識(shí)講座
評論
0/150
提交評論