版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個(gè)動點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù) ,這個(gè)動點(diǎn)的軌跡叫橢圓。這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距。注意:若,則動點(diǎn)的軌跡為線段;若,則動點(diǎn)的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點(diǎn)為a、b,焦點(diǎn)為c)(1)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;2、兩種標(biāo)準(zhǔn)方程可用一般形式表示: 或者 mx2+ny2=1三、橢圓的性質(zhì)(以為例)1、對稱性:對于橢圓標(biāo)準(zhǔn)方程:是以軸、軸為對稱軸的軸對稱圖形;并且是以原點(diǎn)為對稱中心的中心對稱圖形,這個(gè)對稱中心稱為橢圓的中心。2、范圍:橢
2、圓上所有的點(diǎn)都位于直線和所圍成的矩形內(nèi),所以橢圓上點(diǎn)的坐標(biāo)滿足,。3、頂點(diǎn):橢圓的對稱軸與橢圓的交點(diǎn)稱為橢圓的頂點(diǎn)。橢圓與坐標(biāo)軸的四個(gè)交點(diǎn)即為橢圓的四個(gè)頂點(diǎn),坐標(biāo)分別為,。 線段,分別叫做橢圓的長軸和短軸,。和分別叫做橢圓的長半軸長和短半軸長。4、離心率: 橢圓的焦距與長軸長度的比叫做橢圓的離心率,用表示,記作。 因?yàn)?,所以的取值范圍是。越接?,則就越接近,從而越小,因此橢圓越扁;反之,越接近于0,就越接近0,從而越接近于,這時(shí)橢圓就越接近于圓。 當(dāng)且僅當(dāng)時(shí),這時(shí)兩個(gè)焦點(diǎn)重合,圖形變?yōu)閳A,方程為。 離心率的大小只與橢圓本身的形狀有關(guān),與其所處的位置無關(guān)。注意:橢圓的圖像中線段的幾何特征(如下
3、圖): 5、橢圓的第二定義:平面內(nèi)與一個(gè)定點(diǎn)(焦點(diǎn))和一條定直線(準(zhǔn)線)的距離的比為常數(shù)e,(0e1)的點(diǎn)的軌跡為橢圓()。即:到焦點(diǎn)的距離與到準(zhǔn)線的距離的比為離心率的點(diǎn)所構(gòu)成的圖形,也即上圖中有。焦點(diǎn)在x軸上:(ab0)準(zhǔn)線方程:焦點(diǎn)在y軸上:(ab0)準(zhǔn)線方程:6、橢圓的內(nèi)外部需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”(1)點(diǎn)在橢圓的內(nèi)部(2)點(diǎn)在橢圓的外部四、橢圓的兩個(gè)標(biāo)準(zhǔn)方程的區(qū)別和聯(lián)系標(biāo)準(zhǔn)方程 圖形性質(zhì)焦點(diǎn),焦距范圍,對稱性關(guān)于軸、軸和原點(diǎn)對稱頂點(diǎn),軸長長軸長=,
4、短軸長=離心率準(zhǔn)線方程焦半徑,五、其他結(jié)論需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”1、若在橢圓上,則過的橢圓的切線方程是2、若在橢圓外 ,則過Po作橢圓的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是3、橢圓 (ab0)的左右焦點(diǎn)分別為F1,F(xiàn) 2,點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為4、橢圓(ab0)的焦半徑公式:,( , )5、設(shè)過橢圓焦點(diǎn)F作直線與橢圓相交 P、Q兩點(diǎn),A為橢圓長軸上一個(gè)頂點(diǎn),連結(jié)AP 和AQ分別交相應(yīng)于焦點(diǎn)F的橢圓準(zhǔn)線于M、N兩點(diǎn)
5、,則MFNF。6、過橢圓一個(gè)焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q, A1、A2為橢圓長軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MFNF。7、AB是橢圓的不平行于對稱軸的弦,M為AB的中點(diǎn),則,即。8、若在橢圓內(nèi),則被Po所平分的中點(diǎn)弦的方程是9、若在橢圓內(nèi),則過Po的弦中點(diǎn)的軌跡方程是【雙曲線】一、雙曲線的定義1、第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對值等于定長(|F1F2|)的點(diǎn)的軌跡(為常數(shù))。這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn)。 要注意兩點(diǎn):(1)距離之差的絕對值。(2)2a|F1F2|。 當(dāng)|MF1|MF2|=2a時(shí),曲線僅表示焦點(diǎn)F2所對應(yīng)的一支; 當(dāng)|MF1|MF2
6、|=2a時(shí),曲線僅表示焦點(diǎn)F1所對應(yīng)的一支; 當(dāng)2a=|F1F2|時(shí),軌跡是一直線上以F1、F2為端點(diǎn)向外的兩條射線;當(dāng)2a|F1F2|時(shí),動點(diǎn)軌跡不存在。2、第二定義:動點(diǎn)到一定點(diǎn)F的距離與它到一條定直線l的距離之比是常數(shù)e(e1)時(shí),這個(gè)動點(diǎn)的軌跡是雙曲線。這定點(diǎn)叫做雙曲線的焦點(diǎn),定直線l叫做雙曲線的準(zhǔn)線。二、雙曲線的標(biāo)準(zhǔn)方程(,其中|=2c)需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”三、點(diǎn)與雙曲線的位置關(guān)系,直線與雙曲線的位置關(guān)系1、點(diǎn)與雙曲線2、直線與雙曲線四、雙曲
7、線與漸近線的關(guān)系五、雙曲線與切線方程六、雙曲線的性質(zhì)七、 弦長公式1、若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則。2、通徑的定義:過焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線相交于A、B兩點(diǎn),則弦長。3、若弦AB所在直線方程設(shè)為,則。4、特別地,焦點(diǎn)弦的弦長的計(jì)算是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解八、焦半徑公式九、等軸雙曲線十、共軛雙曲線需要雙曲線的詳細(xì)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”【拋物線】一、拋物線的概念平面內(nèi)與一定點(diǎn)F和一條定直
8、線l (l不經(jīng)過點(diǎn)F) 距離相等的點(diǎn)的軌跡叫做拋物線。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。二、拋物線的性質(zhì)三、相關(guān)定義1、通徑:過拋物線的焦點(diǎn)且垂直于對稱軸的弦H1H2稱為通徑;通徑:|H1H2|=2P2、弦長公式:3、焦點(diǎn)弦:過拋物線焦點(diǎn)的弦,若,則(1) x0+, (2),p2(3) 弦長,,即當(dāng)x1=x2時(shí),通徑最短為2p(4) 若AB的傾斜角為,則=(5)+=四、點(diǎn)、直線與拋物線的位置關(guān)系需要詳細(xì)的拋物線的資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”【圓錐曲線與方程】一、圓錐
9、曲線的統(tǒng)一定義平面內(nèi)的動點(diǎn)P(x,y)到一個(gè)定點(diǎn)F(c,0)的距離與到不通過這個(gè)定點(diǎn)的一條定直線的距離之比是一個(gè)常數(shù)e(e0),則動點(diǎn)的軌跡叫做圓錐曲線。其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線稱為準(zhǔn)線,正常數(shù)e稱為離心率。當(dāng)0e1時(shí),軌跡為橢圓;當(dāng)e=1時(shí),軌跡為拋物線;當(dāng)e1時(shí),軌跡為雙曲線。 特別注意:當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí))。二、橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)三、曲線與方程四、坐標(biāo)變換1、坐標(biāo)變換: 2、坐標(biāo)軸的平移:3、中心或頂點(diǎn)在(h,k)的圓錐曲線方程需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)”
10、或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”精講精練【例】以拋物線的焦點(diǎn)為右焦點(diǎn),且兩條漸近線是的雙曲線方程為_.解: 拋物線的焦點(diǎn)為,設(shè)雙曲線方程為,雙曲線方程為【例】雙曲線=1(bN)的兩個(gè)焦點(diǎn)F1、F2,P為雙曲線上一點(diǎn),|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_。解:設(shè)F1(c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),即|PF1|2+|PF2|250+2c2,又|PF1|2+|PF2|2=(|PF1|PF2|)2+2|PF1|PF2|,依雙曲線定義,有|PF1|PF2|=4,依已知條件有|
11、PF1|PF2|=|F1F2|2=4c2 16+8c250+2c2,c2,又c2=4+b2,b2,b2=1?!纠慨?dāng)取何值時(shí),直線:與橢圓相切,相交,相離?解: 代入得化簡得當(dāng)即時(shí),直線與橢圓相切;當(dāng),即時(shí),直線與橢圓相交;當(dāng),即或時(shí),直線與橢圓相離。【例】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)焦點(diǎn)為F,M是橢圓上的任意點(diǎn),|MF|的最大值和最小值的幾何平均數(shù)為2,橢圓上存在著以y=x為軸的對稱點(diǎn)M1和M2,且|M1M2|=,試求橢圓的方程。解:|MF|max=a+c,|MF|min=ac,則(a+c)(ac)=a2c2=b2,b2=4,設(shè)橢圓方程為設(shè)過M1和M2的直線方程為y=x+
12、m將代入得:(4+a2)x22a2mx+a2m24a2=0設(shè)M1(x1,y1)、M2(x2,y2),M1M2的中點(diǎn)為(x0,y0),則x0= (x1+x2)=,y0=x0+m=。代入y=x,得,由于a24,m=0,由知x1+x2=0,x1x2=,又|M1M2|=,代入x1+x2,x1x2可解a2=5,故所求橢圓方程為: =1?!纠磕硳佄锞€形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長的支柱的長。需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】” 解:以拱
13、頂為原點(diǎn),水平線為x軸,建立坐標(biāo)系,如圖,由題意知,|AB|=20,|OM|=4,A、B坐標(biāo)分別為(10,4)、(10,4)設(shè)拋物線方程為x2=2py,將A點(diǎn)坐標(biāo)代入,得100=2p(4),解得p=12。5,于是拋物線方程為x2=25y。由題意知E點(diǎn)坐標(biāo)為(2,4),E點(diǎn)橫坐標(biāo)也為2,將2代入得y=0。16,從而|EE|=(0.16)(4)=3.84。故最長支柱長應(yīng)為3.84米?!纠恳阎獧E圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=x+1與橢圓交于P和Q,且OPOQ,|PQ|=,求橢圓方程。解:設(shè)橢圓方程為mx2+ny2=1(m0,n0),P(x1,y1),Q(x2,y2)由 得(m+n)
14、x2+2nx+n1=0,=4n24(m+n)(n1)0,即m+nmn0,由OPOQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,+1=0,m+n=2又22,將m+n=2,代入得mn=由、式得m=,n=或m=,n=故橢圓方程為+y2=1或x2+y2=1。【例】已知圓C1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。解:由設(shè)橢圓方程為設(shè) 又 兩式相減,得 又即將需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或
15、者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”由得解得 故所有橢圓方程【例】過點(diǎn)(1,0)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過線段AB的中點(diǎn),同時(shí)橢圓C上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對稱,試求直線l與橢圓C的方程。解法一:由e=,得,從而a2=2b2,c=b。設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上。則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12x22)+2(y12y22)=0,設(shè)AB中點(diǎn)為(x0,y0),則kAB=,又(x0,y0)在直線y=x上,y0=x0,于是=1,kAB=1,設(shè)l的方程為
16、y=x+1。右焦點(diǎn)(b,0)關(guān)于l的對稱點(diǎn)設(shè)為(x,y),由點(diǎn)(1,1b)在橢圓上,得1+2(1b)2=2b2,b2=。所求橢圓C的方程為 =1,l的方程為y=x+1。解法二:需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”由e=,從而a2=2b2,c=b。設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x1),將l的方程代入C的方程,得(1+2k2)x24k2x+2k22b2=0,則x1+x2=,y1+y2=k(x11)+k(x21)=k(x1+x2)2k=。直線l:y
17、=x過AB的中點(diǎn)(),則,解得k=0,或k=1。若k=0,則l的方程為y=0,焦點(diǎn)F(c,0)關(guān)于直線l的對稱點(diǎn)就是F點(diǎn)本身,不能在橢圓C上,所以k=0舍去,從而k=1,直線l的方程為y=(x1),即y=x+1,以下同解法一。解法三:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。故可設(shè)直線, ,則, 所以所求的橢圓方程為:【例】如圖,已知P1OP2的面積為,P為線段P1P2的一個(gè)三等分點(diǎn),求以直線OP1、OP2為漸近線且過點(diǎn)P的離心率為的雙曲線方程。解:以O(shè)為原點(diǎn),P1OP2的角平分線為x軸建立如圖所示的直角坐標(biāo)系。設(shè)雙曲線方程為=1(a0,b0),由e2=,得。兩漸近線O
18、P1、OP2方程分別為y=x和y=x設(shè)點(diǎn)P1(x1, x1),P2(x2,x2)(x10,x20),則由點(diǎn)P分所成的比=2,得P點(diǎn)坐標(biāo)為(),又點(diǎn)P在雙曲線=1上,所以=1,即(x1+2x2)2(x12x2)2=9a2,整理得8x1x2=9a2 即x1x2= 由、得a2=4,b2=9。 故雙曲線方程為=1?!纠啃枰嗟母呖紨?shù)學(xué)復(fù)習(xí)資料,請?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”過橢圓C:上一動點(diǎn)P引圓O:x2 +y2 =b2的兩條切線PA、PB,A、B為切點(diǎn),直線AB與x軸,y軸分別交于M、N兩點(diǎn)
19、。(1) 已知P點(diǎn)坐標(biāo)為(x0,y0 )并且x0y00,試求直線AB方程;(2) 若橢圓的短軸長為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點(diǎn)P,由P向圓O所引兩條切線互相垂直?若存在,請求出存在的條件;若不存在,請說明理由。解:(1)設(shè)A(x1,y1),B(x2, y2) 切線PA:,PB:P點(diǎn)在切線PA、PB上,直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,) 2b=8 b=4 代入得a2 =25, b2 =16橢圓C方程: (3) 假設(shè)存在點(diǎn)P(x0,y0)滿足PAPB,連接OA、OB由|PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| 又P點(diǎn)在橢圓C上 由知x ab0 a2 b20(1)當(dāng)a22b20,即ab時(shí),橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a22b20,即ba0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(I)求橢圓E的方程;(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由??键c(diǎn):本題屬于探究是否存在的問題,主要考查了橢圓的標(biāo)準(zhǔn)方程的確定,直線與橢圓的位置關(guān)系直線與圓的位置關(guān)系和待定系數(shù)法求方程的方法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房衛(wèi)生工具管理規(guī)定(3篇)
- 《工程合同管理》課程教學(xué)大綱
- 船舶側(cè)向推進(jìn)器課程設(shè)計(jì)
- 物聯(lián)網(wǎng)煙霧報(bào)警課程設(shè)計(jì)
- 生物數(shù)學(xué)的基礎(chǔ)課程設(shè)計(jì)
- 自動服務(wù)課程設(shè)計(jì)
- 2024幼兒園安全生產(chǎn)月活動工作總結(jié)范文(31篇)
- 藝術(shù)家作品課程設(shè)計(jì)
- 航空公司服務(wù)員工作總結(jié)
- 教育行業(yè)營銷策略分享
- 聲光影的內(nèi)心感動:電影視聽語言學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 創(chuàng)新轉(zhuǎn)化管理智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)
- 新修訂《數(shù)據(jù)安全法》全文ppt
- 各項(xiàng)常規(guī)檢查前后的注意事項(xiàng)課件
- 2021年推進(jìn)婦幼健康領(lǐng)域中醫(yī)藥工作總結(jié)
- 綠化苗木組織供應(yīng)及售后服務(wù)方案
- YY∕T 0314-2021 一次性使用人體靜脈血樣采集容器
- 第五章_油樣分析
- 儲罐受限空間作業(yè)方案DOC
- 壓力容器耐壓試驗(yàn)
- 課程設(shè)計(jì)---年產(chǎn)5.6萬噸乙醇精餾塔的設(shè)計(jì)
評論
0/150
提交評論