版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、選修2-3:二項式定理常見題型1二項式定理:,2基本概念:二項式展開式:右邊的多項式叫做的二項展開式。二項式系數(shù):展開式中各項的系數(shù).項數(shù):共n+1項,是關(guān)于與的齊次多項式通項:展開式中的第項叫做二項式展開式的通項。用表示。3性質(zhì):二項式系數(shù)的對稱性:與首末兩端“對距離”的兩個二項式系數(shù)相等,即.二項式系數(shù)和:令,可得二項式系數(shù)的和為, 變形式。奇數(shù)項的二項式系數(shù)和=偶數(shù)項的二項式系數(shù)和:在二項式定理中,令,則,從而得到:二項式系數(shù)的最大項:如果二項式的冪指數(shù)是偶數(shù)時,則中間一項的二項式系數(shù)取得最大值。 如果二項式的冪指數(shù)是奇數(shù)時,則中間兩項的二項式系數(shù),同時取得最大值。系數(shù)的最大項:求展開式
2、中最大的項,一般采用待定系數(shù)法。設(shè)展開式中各項系數(shù)分別為,設(shè)第項系數(shù)最大,應(yīng)有,從而解出來。題型一:二項式定理的逆用;例:解: 練:解: 題型二:利用通項公式求的系數(shù);例:在二項式的展開式中倒數(shù)第項的系數(shù)為,求含有的項的系數(shù)?解:由條件知,即,解得,由,由題意,則含有的項是第項,系數(shù)為。練:求展開式中的系數(shù)?解:,令,則故的系數(shù)為。題型三:利用通項公式求常數(shù)項;例:求二項式的展開式中的常數(shù)項?解:,令,得,所以練:求二項式的展開式中的常數(shù)項?解:,令,得,所以練:若的二項展開式中第項為常數(shù)項,則解:,令,得.題型四:利用通項公式,再討論而確定有理數(shù)項;例:求二項式展開式中的有理項?解:,令,(
3、)得,所以當(dāng)時,當(dāng)時,。題型五:奇數(shù)項的二項式系數(shù)和=偶數(shù)項的二項式系數(shù)和;例:若展開式中偶數(shù)項系數(shù)和為,求.解:設(shè)展開式中各項系數(shù)依次設(shè)為 ,則有,,則有 將-得: 有題意得,。練:若的展開式中,所有的奇數(shù)項的系數(shù)和為,求它的中間項。解:,解得 所以中間兩個項分別為,題型六:最大系數(shù),最大項;例:已知,若展開式中第項,第項與第項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項的系數(shù)是多少?解:解出,當(dāng)時,展開式中二項式系數(shù)最大的項是,當(dāng)時,展開式中二項式系數(shù)最大的項是,。練:在的展開式中,二項式系數(shù)最大的項是多少?解:二項式的冪指數(shù)是偶數(shù),則中間一項的二項式系數(shù)最大,即,也就是第項。練:在
4、的展開式中,只有第項的二項式最大,則展開式中的常數(shù)項是多少?解:只有第項的二項式最大,則,即,所以展開式中常數(shù)項為第七項等于練:寫出在的展開式中,系數(shù)最大的項?系數(shù)最小的項?解:因為二項式的冪指數(shù)是奇數(shù),所以中間兩項()的二項式系數(shù)相等,且同時取得最大值,從而有的系數(shù)最小,系數(shù)最大。練:若展開式前三項的二項式系數(shù)和等于,求的展開式中系數(shù)最大的項?解:由解出,假設(shè)項最大,化簡得到,又,展開式中系數(shù)最大的項為,有練:在的展開式中系數(shù)最大的項是多少?解:假設(shè)項最大,化簡得到,又,展開式中系數(shù)最大的項為題型七:含有三項變兩項;例:求當(dāng)?shù)恼归_式中的一次項的系數(shù)?解法:,當(dāng)且僅當(dāng)時,的展開式中才有x的一次
5、項,此時,所以得一次項為它的系數(shù)為。解法: 故展開式中含的項為,故展開式中的系數(shù)為240.練:求式子的常數(shù)項?解:,設(shè)第項為常數(shù)項,則,得, .題型八:兩個二項式相乘;例:解: .練:解:.練:解:題型九:奇數(shù)項的系數(shù)和與偶數(shù)項的系數(shù)和;例:解:題型十:賦值法;例:設(shè)二項式的展開式的各項系數(shù)的和為,所有二項式系數(shù)的和為,若,則等于多少?解:若,有, 令得,又,即解得,.練:若的展開式中各項系數(shù)之和為,則展開式的常數(shù)項為多少?解:令,則的展開式中各項系數(shù)之和為,所以,則展開式的常數(shù)項為.練:解: 練:解:題型十一:整除性;例:證明:能被64整除證:由于各項均能被64整除練習(xí):1、(x1)11展開
6、式中x的偶次項系數(shù)之和是 1、設(shè)f(x)=(x-1)11, 偶次項系數(shù)之和是2、 2、4n3、的展開式中的有理項是展開式的第 項3、3,9,15,21 4、(2x-1)5展開式中各項系數(shù)絕對值之和是 4、(2x-1)5展開式中各項系數(shù)系數(shù)絕對值之和實為(2x+1)5展開式系數(shù)之和,故令x=1,則所求和為355、求(1+x+x2)(1-x)10展開式中x4的系數(shù)5、,要得到含x4的項,必須第一個因式中的1與(1-x)9展開式中的項作積,第一個因式中的x3與(1-x)9展開式中的項作積,故x4的系數(shù)是6、求(1+x)+(1+x)2+(1+x)10展開式中x3的系數(shù)6、=,原式中x3實為這分子中的x4,則所求系數(shù)為7、若展開式中,x的系數(shù)為21,問m、n為何值時,x2的系數(shù)最???7、由條件得m+n=21,x2的項為,則因nN,故當(dāng)n=10或11時上式有最小值,也就是m=11和n=10,或m=10和n=11時,x2的系數(shù)最小8、自然數(shù)n為偶數(shù)時,求證: 8、原式=9、求被9除的余數(shù)9、 ,kZ,9k-1Z,被9除余810、在(x2+3x+2)5的展開式中,求x的系數(shù)10、在(x+1)5展開式中,常數(shù)項為1,含x的項為,在(2+x)5展開式中,常數(shù)項為25=32,含
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 交通安全伴我行國旗下講話稿
- 消化內(nèi)科功能性胃腸病治療
- 《兒科心臟術(shù)后監(jiān)護(hù)》課件
- 工廠訂餐合同范例
- 工程追加項合同范例
- 帳篷攤位出租合同范例
- 微信錄音合同模板
- 學(xué)校黑板采購合同范例
- 建材店員工簡易合同范例
- 工廠合作股合同范例
- (完整版)青年就業(yè)創(chuàng)業(yè)見習(xí)基地匯報材料(完整版)
- 月光(羽泉)原版五線譜鋼琴譜正譜樂譜.docx
- 660MW機(jī)組空預(yù)器聲波吹灰器可行性研究報告最新(精華版)
- 控制柜安裝施工方案
- 七年級歷史教案:林則徐的教學(xué)設(shè)計
- 動車組火災(zāi)檢測(報警)系統(tǒng)
- 水面垃圾自動打撈船的設(shè)計 (全套圖紙)
- 煙草企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化 規(guī)范
- 裝飾施工技術(shù)標(biāo)準(zhǔn)及要求
- 2018秋七年級虎外考試卷英語試卷
- 河洛擇日法[技巧]
評論
0/150
提交評論