二項式公式大全_第1頁
二項式公式大全_第2頁
二項式公式大全_第3頁
二項式公式大全_第4頁
二項式公式大全_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、二項式定理馬平江馬平江 今天是星期四,那么今天是星期四,那么(1)7天后的這一天是星期幾呢天后的這一天是星期幾呢? ?1008(4)(4)如果是如果是 天后的這一天呢?天后的這一天呢? (2)(2)如果是如果是15天后的這一天呢?天后的這一天呢?(3)(3)如果是如果是24天后的這一天呢?天后的這一天呢?問問 題題2)ba(3)(ba322333babbaa222baba?100)(ba)()(bababa)(22bbaababa2ababa3a2baba23bbabab2回回 顧顧2 22 22 2b b2 2a ab ba ab b) )(a a3 32 22 23 33 3b b3 3a

2、 ab bb b3 3a aa ab b) )( (a ab ba ab b) )(a a1 14 4b b) )(a a4 4a ab ba a3 32 22 2b ba a3 3a ab b4 4b bn nb b) )(a an na ab ba a1 1- -n n2 22 2- -n nb ba an nb b1 1- -n na ab b二項式定理的探索二項式定理的探索b)b)b)(ab)(ab)(ab)(a(a(ab)b)(a(a3 3b ba a2 23 3b b2 2a ab b3 3a a3 33 33 32 22 23 32 21 13 33 30 03 3b bC Ca

3、babC Cb ba aC Ca aC C0 03 3C C1 13 3C C2 23 3C C3 33 3C C二項式定理的探索二項式定理的探索4 44 44 43 33 34 42 22 22 24 43 31 14 44 40 04 44 4b bC CababC Cb ba aC Cb ba aC Ca aC Cb)b)(a(a1 1b)b)(a(a3 3b)b)(a(a3 33 33 32 22 23 32 21 13 33 30 03 3b bC CababC Cb ba aC Ca aC C2 2b)b)(a(a2 22 22 21 12 22 20 02 2b bC Cabab

4、C Ca aC C1 11 11 11 10 01 1b bC Ca aC Cn nb)b)(a(an nn nn nr rr r- -n nr rn n1 1- -n n1 1n nn n0 0n nb bC Cb ba aC Cb ba aC Ca aC C二項式定理的探索二項式定理的探索二項式證明二項式證明右,所以等式成立時,左當bCaCbaba110111n(1)時,等式成立,即令kn(2)kkk22k2k1k1kk0kbCbaCbaCaCba)( kn nb)b)(a(an nn nn nr rr r- -n nr rn n1 1- -n n1 1n nn n0 0n nb bC C

5、b ba aC Cb ba aC Ca aC C應用數學歸納法證明應用數學歸納法證明)bCbaCbaCaC)( b)(a)(bakkk22k2k1k1kk0kk1)( babak1k1k1k21k11kk11k1k01kbC.baCaCaCb那么那么1kkk21k1k2kk0k1k1k01kkkk22k2k1k1kk0kkkk22k2k1k1kk0kbC.ba )CC(a )CC(aC)bCbaCbaCaC()bCbaCbaCaC( bba111rkrkrkCCC所以當所以當n=k+1時也成立。由數學歸納法知,等式對一切時也成立。由數學歸納法知,等式對一切nN成立成立二項展開式的特點二項展開式

6、的特點項項數:數:共共n1項項指數:指數:a按降冪排列,按降冪排列,b按升冪排列按升冪排列,每一項中每一項中a、b的指數和為的指數和為nnnn22n2n1n1nn0nnbCbaCbaCaCba)( 系數:第系數:第r1項的二項式系數為項的二項式系數為 (r0,1,2,n)rnCrnC二項式定理二項式定理 表示展開式的第表示展開式的第r1項項 (r=0,1,2.n)表示為二項式的系數)表示為二項式的系數二項二項展開式:定理中右邊的多項式展開式:定理中右邊的多項式nnnrrnrn22n2n1n1nn0nbCbabaCbaCaCC r=0,1,2,n.二項式定理二項式定理二項展開式的二項展開式的通項

7、通項rrnrn1rbaCTrnC注意:區(qū)別二項式系數與對應項的系數:二項式系數特指注意:區(qū)別二項式系數與對應項的系數:二項式系數特指 與與a,b無關。而對應的項的系數不僅與無關。而對應的項的系數不僅與 有關也與有關也與a,b的值有關。的值有關。rnCrnC12nx rrnrn1r2x1CTrnCr2Crn二項展開式的二項展開式的通項通項rrnrn1rbaCT的第的第r+1項項nabnbarrnrn1rbaCTrrnrn1rabCT的第的第r+1項項區(qū)別區(qū)別所以所以應用二項式時,應用二項式時,a與與b不能交換位置不能交換位置二項式定理二項式定理例如例如其第其第r+1項為項為二項式系數二項式系數其

8、對應項系數為其對應項系數為公式變形:公式變形:)(nbarrnrnr1rbaC1T nnnnrrnrnr22n2n1n1nn0nbC1baC1baCbaCaC)()( 通項公式通項公式二項式定理二項式定理例例1 1 求求 的展開式的展開式413xx解:解:413 xx4231xx04421(3 )Cxx134(3 )Cx224(3 )Cx34(3 )C x44C43221(8110854121)xxxxx221218110854xxxx化簡后再展開化簡后再展開例題講解例題講解1 10 00 01 10 00 01 1)(7 78 8r r100100r r10010099991 1100100

9、1001000 01001007 7C C7 7C C7 7C C1 10 00 01 10 00 01 19 99 91 10 00 0C C7 7C C 余數是余數是1 1, 所以是所以是星期五星期五)(9 99 91 10 00 09 99 90 01 10 00 0C C7 7C C71 110084 4、今天是星期四,那么、今天是星期四,那么 天后天后的這一天是星期幾?的這一天是星期幾?例題講解例題講解 二項式定理二項式定理222110baCbaCaCba-nn-nnnnnnnn-n-nnbCabC11二項式展開的通項二項式展開的通項rr -nrnrbaCT1總結總結第第 項項1r作業(yè):37p2題(2)。3題(1)。4題(1)(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論