勾股定理的歷史與證明_第1頁(yè)
勾股定理的歷史與證明_第2頁(yè)
勾股定理的歷史與證明_第3頁(yè)
勾股定理的歷史與證明_第4頁(yè)
勾股定理的歷史與證明_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、安溪六中校本課程之?dāng)?shù)學(xué)探秘勾股定理史話一、勾股定理的歷史勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”,是初等幾何中的一個(gè)基本定理。那么大家知道多少勾股定理的別稱呢?我可以告訴大家,有:畢達(dá)哥拉斯定理,商高定理,百牛定理,驢橋定理和埃及三角形等。所謂勾股定理,就是指“在直角三角形中,兩條直角邊的平方和等于斜邊的平方?!边@個(gè)定理有十分悠久的歷史,幾乎所有文明古國(guó)(希臘、中國(guó)、埃及、巴比倫、印度等)對(duì)此定理都有所研究。勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯(Pythagoras,公元前572?公元前497?)于公元前550年首先發(fā)現(xiàn)的。但畢達(dá)哥拉斯對(duì)勾股定理的證明方法

2、已經(jīng)失傳。著名的希臘數(shù)學(xué)家歐幾里得(Euclid,公元前330公元前275)在巨著幾何原本(第卷,命題47)中給出一個(gè)很好的證明。(下圖為歐幾里得和他的證明圖)中國(guó)古代對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。中國(guó)最早的一部數(shù)學(xué)著作周髀算經(jīng)的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:周公問(wèn):“我聽(tīng)說(shuō)您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒(méi)有梯子可以上去,地也沒(méi)法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?” 商高回答說(shuō):“ 數(shù)的產(chǎn)生來(lái)源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形矩得到的一條直角邊勾等于3,另一條直角邊股等于4的時(shí)候,那么它的斜邊弦就必定是5。這

3、個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來(lái)的呵?!?如果說(shuō)大禹治水因年代久遠(yuǎn)而無(wú)法確切考證的話,那么周公與商高的對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了五百多年。其中所說(shuō)的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例。所以現(xiàn)在數(shù)學(xué)界把它稱為“勾股定理”是非常恰當(dāng)?shù)摹M扑]精選。 在稍后一點(diǎn)的九章算術(shù)一書中(約在公元50至100年間),勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的勾股章說(shuō);“把勾和股分別自乘,然后把它們的積加起來(lái),再進(jìn)行開方,便可以得到弦”。九章算術(shù)系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢以來(lái)的數(shù)學(xué)成就,共收集了246個(gè)數(shù)學(xué)的應(yīng)用問(wèn)題和各個(gè)問(wèn)題的解法,列為九章,可能是所有中國(guó)數(shù)學(xué)著作中

4、影響最大的一部 。中國(guó)古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明(右圖)。趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形ABDE是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間的小正方形邊長(zhǎng)為b-a,則面積為(b-a)2。于是便可得如下的式子: 4(ab/2)+(b-a)2=c2 化簡(jiǎn)后便可得: a2+b2=c2 亦即:c=(a2+b2)(1/2

5、) 他用幾何圖形的截、割、拼、補(bǔ)來(lái)證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范。以后的數(shù)學(xué)家大多繼承了這一風(fēng)格并且有發(fā)展,只是具體圖形的分合移補(bǔ)略有不同而已。例如稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用以形證數(shù)的方法,中國(guó)古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來(lái)的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。推薦精選二、勾股定理的證明據(jù)不完全統(tǒng)計(jì),勾股定理的證明方法已經(jīng)多達(dá)400多種了。下面我便向大家介紹幾種十分著名的證明方法?!咀C法1】(趙爽證明)以a、

6、b 為直角邊(ba), 以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于. 把這四個(gè)直角三角形拼成如圖所示形狀. RtDAH RtABE, HDA = EAB. HAD + HAD = 90, EAB + HAD = 90, ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于c2. EF = FG =GH =HE = ba ,HEF = 90. EFGH是一個(gè)邊長(zhǎng)為ba的正方形,它的面積等于. .【證法2】(課本的證明)做8個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,再做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的

7、邊長(zhǎng)都是a + b,所以面積相等. 即, 整理得 .推薦精選【證法3】(1876年美國(guó)總統(tǒng)Garfield證明)以a、b 為直角邊,以c為斜邊作兩個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于. 把這兩個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90. DEC = 18090= 90. DEC是一個(gè)等腰直角三角形,它的面積等于.又 DAE = 90, EBC = 90, ADBC.ABCD是一個(gè)直角梯形,它的面積等于 .【趣聞】:在1876年一個(gè)周末的傍晚,在美國(guó)華盛頓的郊

8、外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國(guó)俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)神地談?wù)撝裁?,時(shí)而大聲爭(zhēng)論,時(shí)而小聲探討。由于好奇心驅(qū)使伽菲爾德循聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么。只見(jiàn)一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形。于是伽菲爾德便問(wèn)他們?cè)诟墒裁矗恐灰?jiàn)那個(gè)小男孩頭也不抬地說(shuō):“請(qǐng)問(wèn)先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長(zhǎng)為多少呢?”伽菲爾德答到:“是5呀?!毙∧泻⒂謫?wèn)道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長(zhǎng)又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定

9、等于5的平方加上7的平方。”小男孩又說(shuō)道:“先生,你能說(shuō)出其中的道理嗎?”伽菲爾德一時(shí)語(yǔ)塞,無(wú)法解釋了,心理很不是滋味。于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經(jīng)過(guò)反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡(jiǎn)潔的證明方法。1876年4月1日,伽菲爾德在新英格蘭教育日志上發(fā)表了他對(duì)勾股定理的這一證法。1881年,伽菲爾德就任美國(guó)第二十任總統(tǒng)后來(lái),人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡(jiǎn)捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)?!弊C法?!咀C法4】(歐幾里得證明)做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點(diǎn)在一條直線上,連結(jié)BF、CD. 過(guò)

10、C作CL推薦精選DE,交AB于點(diǎn)M,交DE于點(diǎn)L. AF = AC,AB = AD,F(xiàn)AB = GAD, FAB GAD, FAB的面積等于,GAD的面積等于矩形ADLM的面積的一半, 矩形ADLM的面積 =.同理可證,矩形MLEB的面積 =. 正方形ADEB的面積 = 矩形ADLM的面積 + 矩形MLEB的面積 ,即 .【證法5】(利用相似三角形性質(zhì)證明)如圖,在RtABC中,設(shè)直角邊AC、BC的長(zhǎng)度分別為a、b,斜邊AB的長(zhǎng)為c,過(guò)點(diǎn)C作CDAB,垂足是D.在ADC和ACB中, ADC = ACB = 90,CAD = BAC, ADC ACB.ADAC = AC AB,即 .同理可證,C

11、DB 推薦精選 ACB,從而有 . ,即 【證法6】(鄒元治證明)以a、b 為直角邊,以c為斜邊做四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于. 把這四個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上,B、F、C三點(diǎn)在一條直線上,C、G、D三點(diǎn)在一條直線上. RtHAE RtEBF, AHE = BEF. AEH + AHE = 90, AEH + BEF = 90. HEF = 18090= 90. 四邊形EFGH是一個(gè)邊長(zhǎng)為c的正方形. 它的面積等于c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90, EHA + GHD = 90.又 GHE = 90, DHA = 90+ 90= 180. ABCD是一個(gè)邊長(zhǎng)為a + b的正方形,它的面積等于. . .推薦精選【證法7】(利用切割線定理證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c.如圖,以B為圓心a為半徑作圓,交AB及AB的延長(zhǎng)線分別于D、E,則BD = BE = BC = a.因?yàn)锽CA = 90,點(diǎn)C在B上,所以AC是B 的切線. 由切割線定理,得= ,即, .【證法8】(作直角三角形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論