中心對稱課件2_第1頁
中心對稱課件2_第2頁
中心對稱課件2_第3頁
中心對稱課件2_第4頁
中心對稱課件2_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、情境引入情境引入 “雙魚雙魚”剪紙作品是由兩剪紙作品是由兩個形狀、大小完全相同的圖案個形狀、大小完全相同的圖案組成的,這兩個圖案的位置有組成的,這兩個圖案的位置有怎樣的特殊關(guān)系?怎樣改變其怎樣的特殊關(guān)系?怎樣改變其中一個圖案的位置,可以使它中一個圖案的位置,可以使它與另一個圖案重合?與另一個圖案重合? abco一、觀察下面的圖形圖形運動一、觀察下面的圖形圖形運動abcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacboabcacbo有什么發(fā)現(xiàn)?有什么發(fā)現(xiàn)?把

2、一個圖形繞把一個圖形繞著某一個點旋著某一個點旋轉(zhuǎn)轉(zhuǎn)180,如果如果它能夠與另一它能夠與另一個圖形重合個圖形重合,那那么就說這兩個么就說這兩個圖形圖形關(guān)于這個關(guān)于這個點對稱點對稱, 或或中中心對稱心對稱.abcacbo這個點叫作對稱中心這個點叫作對稱中心中心對稱的定義中心對稱的定義探索活動四探索活動四觀察下列圖案說一說它們有什么共同特征?觀察下列圖案說一說它們有什么共同特征? 在日常生活中,你還見到過具有這種特征在日常生活中,你還見到過具有這種特征的圖案嗎?試舉例說明的圖案嗎?試舉例說明. 把一個圖形繞某一點旋轉(zhuǎn)把一個圖形繞某一點旋轉(zhuǎn)180180,如果旋,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形互相重合

3、,那么轉(zhuǎn)后的圖形能夠與原來的圖形互相重合,那么這個圖形叫做中心對稱圖形這個圖形叫做中心對稱圖形. .這個點就是它的這個點就是它的對稱中心對稱中心. . 軸對稱軸對稱中心對稱中心對稱有一條對稱軸有一條對稱軸直線直線有一個對稱中心有一個對稱中心點點圖形沿對稱軸對折圖形沿對稱軸對折( (翻折翻折180180) )后重合后重合圖形繞對稱中心旋轉(zhuǎn)圖形繞對稱中心旋轉(zhuǎn)180180后重合后重合折疊后與另一圖形重合折疊后與另一圖形重合旋轉(zhuǎn)后與另一圖形重合旋轉(zhuǎn)后與另一圖形重合對稱點的連線被對稱軸對稱點的連線被對稱軸垂直平分垂直平分對稱點連線經(jīng)過對稱中對稱點連線經(jīng)過對稱中心心, ,且被對稱中心平分且被對稱中心平分課堂小結(jié)課堂小結(jié)1.一個圖形繞著某一點旋轉(zhuǎn)一個圖形繞著某一點旋轉(zhuǎn)180 180 ,如果它能夠與另一,如果它能夠與另一個圖形重合,那么稱這兩個圖形關(guān)于這點對稱,也稱這個圖形重合,那么稱這兩個圖形關(guān)于這點對稱,也稱這兩個圖形成中心對稱兩個圖形成中心對稱. .這個點叫做對稱中心這個點叫做對稱中心. .2.2.成中心對稱的兩個圖形中,對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論