Segmentation using eigenvectors - University of Nevada, Reno分割使用特征向量-內(nèi)華達(dá)大學(xué)里諾校區(qū)_第1頁
Segmentation using eigenvectors - University of Nevada, Reno分割使用特征向量-內(nèi)華達(dá)大學(xué)里諾校區(qū)_第2頁
Segmentation using eigenvectors - University of Nevada, Reno分割使用特征向量-內(nèi)華達(dá)大學(xué)里諾校區(qū)_第3頁
Segmentation using eigenvectors - University of Nevada, Reno分割使用特征向量-內(nèi)華達(dá)大學(xué)里諾校區(qū)_第4頁
Segmentation using eigenvectors - University of Nevada, Reno分割使用特征向量-內(nèi)華達(dá)大學(xué)里諾校區(qū)_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、normalized cuts and image segmentationjianbo shi and jitendra malik,presented by: alireza tavakkoliimage segmentationimage segmentationlhow do you pick the right segmentation? bottom up segmentation: - tokens belong together because they are locally coherent. top down segmentation: - tokens grouped

2、because they lie on the same object.“correct” segmentationlthere may not be a single correct answer.lpartitioning is inherently hierarchical.lone approach we will use in this presentation:l“use the low-level coherence of brightness, color, texture or motion attributes to come up with partitions”outl

3、ine1.introduction2.graph terminology and representation.3.“min cuts” and “normalized cuts”.4.other segmentation methods using eigenvectors.5.conclusions.outline2.graph terminology and representation.3.“min cuts” and “normalized cuts”.4.other segmentation methods using eigenvectors.5.conclusions.grap

4、h-based image segmentationimage (i)graph affinities(w)intensitycoloredgestextureslide from timothee cour (/timothee)graph-based image segmentationimage (i)(1)(1),(),(bvolavolbacutbancutslide from timothee cour (/timothee)graph affinities(w)intensitycol

5、oredgestexturegraph-based image segmentationimage (i)(1)(1),(),(bvolavolbacutbancuteigenvector x(w)aiifaiifixdxxwda01)()(slide from timothee cour (/timothee)graph affinities(w)intensitycoloredgestexturegraph-based image segmentationimage (i)(1)(1),(),(bvolavolbacutbancuteigen

6、vector x(w)discretizationslide from timothee cour (/timothee)aiifaiifixdxxwda01)()(graph affinities(w)intensitycoloredgestextureoutline1.introduction3.“min cuts” and “normalized cuts”.4.other segmentation methods using eigenvectors.5.conclusions.graph-based image segmentation

7、v: graph nodese: edges connection nodesg = v,epixelspixel similarityslides from jianbo shigraph terminologylsimilarity matrix:slides from jianbo shi222)()(,xjixxjiewjiww,affinity matrixsimilarity of image pixels to selected pixelbrighter means more similarreshapen*m pixelsn*m pixelsm pixelsn pixelst

8、he size of w is quadratic with the numberof parameters!graph terminologyldegree of node:slides from jianbo shijjiiwd,graph terminologylvolume of set:slides from jianbo shiaiivadavol,)(graph terminologyajaijiwaacut,),(slides from jianbo shilcuts in a graph:representationkxxx,.,1jjiwiid,),(wdlsegments

9、pixels),(),(jiaffjiwpixel similarity functionsintensitytexturedistance222)()(),(ijiiiejiw222)()(),(xjixxejiw222)()(),(cjiccejiwpixel similarity functionsintensitytexturedistance222)()(),(ijiiiejiw222)()(),(xjixxejiw222)()(),(cjiccejiwhere c(x) is a vector of filter outputs. a natural thing to do is

10、to square the outputs of a range of different filters at different scales and orientations, smooth the result, and rack these into a vector.definitionslmethods that use the spectrum of the affinity matrix to cluster are known as .lnormalized cuts, average cuts, average association make use of the ei

11、genvectors of the affinity matrix.lwhy these methods work?spectral clusteringdatasimilarities* slides from dan klein, sep kamvar, chris manning, natural language group stanford universityeigenvectors and blockslblock matrices have block eigenvectors:lnear-block matrices have near-block eigenvectors:

12、1100110000110011eigensolver.71.710000.71.711= 22= 23= 04= 011.2 0110-.2.20110-.211eigensolver.71.69.1400-.14.69.711= 2.022= 2.023= -0.024= -0.02* slides from dan klein, sep kamvar, chris manning, natural language group stanford universityspectral spacelcan put items into blocks by eigenvectors:lclus

13、ters clear regardless of row ordering:11.2 0110-.2.20110-.400-.14.69.71e1e2e1e21.2 10.2101101-.201-.900.69-.14.71e1e2e1e2* slides from dan klein, sep kamvar, chris manning, natural language group stanford universityoutline1.introduction2.graph terminology and representation.4.ot

14、her segmentation methods using eigenvectors.5.conclusions.how do we extract a good cluster?: we want a vector giving the association between each element and a clusterlwe want elements within this cluster to, on the whole, have lwe could lbut need the lthis is an - choose the eigenvector of w with l

15、argest eigenvalue.wxxt1xxtlcriterion for partition:minimum cutbvaubavuwbacut,),(min),(minfirst proposed by wu and leahyabideal cutcuts with lesser weightthan the ideal cutweight of cut is directly proportional to the number of edges in the cut.normalized cut)(1)(1),(),(bvolavolbacutbancutnormalized

16、cut or balanced cut:finds better cutnormalized cutlvolume of set (or association):vtautuwvaassocavol,),(),()(abnormalized cutlvolume of set (or association):ldefine normalized cut: “a fraction of the total edge connections to all the nodes in the graph”:),(),(),(),(),(vbassocbacutvaassocbacutbancutv

17、tautuwvaassocavol,),(),()(),(),(),(),(),(vbassocbbassocvaassocaaassocbanassocababldefine normalized association: “how tightly on average nodes within the cluster are connected to each other”ab01dytsubject to:observations(i)lmaximizing nassoc is the same as minimizing ncut, since they are related:lho

18、w to minimize ncut?ltransform ncut equation to a matricial form.lafter simplifying:),(2),(banassocbancutdyyywdyxncutttyx)(min)(minrayleigh quotientlinstead, relax into the continuous domain by solving generalized eigenvalue system:lwhich gives:lnote that so, the first eigenvector is y0=1 with eigenv

19、alue 0.lthe second smallest eigenvector is the real valued solution to this problem!observations(ii)dyywd)(01 )(wdmaxyytdwy subject to ytdy 1minalgorithm1.define a similarity function between 2 nodes. i.e.:2.compute affinity matrix (w) and degree matrix (d).3.solve4.use the eigenvector with the seco

20、nd smallest eigenvalue to bipartition the graph.5.decide if re-partition current partitions.note: since precision requirements are low, w is very sparse and only few eigenvectors are required, the eigenvectors can be extracted very fast using lanczos algorithm.dyywd)(222)()(222)()(,xjiijixxffjiewdis

21、cretizationlsometimes there is not a clear threshold to binarize since eigenvectors take on continuous values.lhow to choose the splitting point? a)pick a constant value (0, or 0.5).b)pick the median value as splitting point.c)look for the splitting point that has the minimum ncut value:1.choose n p

22、ossible splitting points.2.compute ncut value.3.pick minimum.use k-eigenvectorslrecursive 2-way is slow.lwe can use more eigenvectors to re-partition the graph, however:lnot all eigenvectors are useful for partition ().lprocedure: compute with a high . then follow one of these procedures:a)merge seg

23、ments that minimize -way criterion.b)use the k segments and find the partitions there using exhaustive search.lcompute q (next slides).11.2 0110-.2.20110-.400-.14.69.71e1e2e1e2exampleexperimentsldefine similarity:l for point sets.l for brightness images.l for hsv images.l in case of textu

24、re.222)()(222)()(,xjiijixxffjiew 1if iiif )cos(.),sin(.,hsvhsvvif |*| ,|,*|1nfifiifexperiments (i)lpoint set segmentation:(a) pointset generated by poisson process. (b) segmentation results.experiments (ii)lsynthetic images:experiments (iii)lweather radar:experiments (iv)lmotion segmentationoutline1

25、.introduction2.graph terminology and representation.5.conclusions.other methodslaverage associationluse the eigenvector of w associated to the biggest eigenvalue for partitioning.ltries to maximize:lhas a bias to find tight clusters. useful for gaussian distributions.bbbassocaaaassoc),(),(abother me

26、thodslaverage cutltries to minimize:lvery similar to normalized cuts.lwe cannot ensure that partitions will have a a tight within-group similarity since this equation does not have the nice properties of the equation of normalized cuts.bbacutabacut),(),(other methodsother methods20 points are randomly distributed from 0.0 to 0.512 points are randomly distributed from 0.65 to 1.0other methods20 points are randomly distributed from 0.0 to 0.512 points are randomly distributed

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論