




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 thediophantineequationax2+2bxy4ay2=±1lionel bapounguÉreceived 30april 2002we discuss, with the aid of arithmetical properties of the ring of the gaussianintegers, the solvability of the diophantine equation ax2+2bxy 4ay2 = ±1,where aandbarenonnegative integers. thediscussion isrelati
2、ve tothesolutionofpells equation v2(4a2+b2)w2=4.2000 mathematics subject classication: 11d09.1. introduction. the objective of this paper is the expansion and also theextensionof1,section2.moreprecisely,itdealswiththecompletetreatmentofthesolvability ofthediophantine equationax2+2bxy4ay2=±1,(1.
3、1)where a and b are positive integers. from 2, proposition 1, (1.1) is alwayssolvable if a = 1. hence, we may assume that a > 1. moreover, we restrictoneselftogcd(a,2b)=1.intheopposite case,(1.1)isinsolvable.we denote by =4a2+b2 the discriminant of the quadratic form ax2+2bxy4ay2.if a>1, b 0,
4、and gcd(a,2b) =1, 2, theorem 1 shows that (1.1) is in-solvable ifisasquare in z.hence, we will assume also that =4a2+b2 isa nonsquare in z, which requires b to be odd. then veries 5(mod8).thus,(cf.4)thealgebraicintegersofq( )arethenumbers(1/2)(v+w)withv,wzofthesameparity.consequently, if(1/2)(v+w )i
5、saunitofq( ),wemusthavev2w2=±4.(1.2)conversely, if(v,w) isaninteger solution of(1.2),then(1/2)(v+w)isaninteger ofq( )(itstrace isv anditsnorm, by(1.2), is±1)and,hence, a00unitofq( ).writing (1/2)(v +w )forthefundamental unitofq( ),weseethatthesolutionsinpairsofnaturalnumbers (v,w) of(1.2)c
6、omprisethevaluesofthesequence (vn,wn)(n1)denedbysettingn 12v0+w0vn+wn=.(1.3)2 2242lionel bapounguÉhence,weremarkeasily(cf.2)thatif(x,y) isasolutionof(1.1),thenv=bx2+8axy+4by2,w=x2+4y2(1.4)verifywith=4a2+b2 (a>1, b1, and gcd(a,2b)=1)thepellsequationv2w2=4 withv,w odd.(1.5)hence, our study wil
7、l be based on (1.5). thus, assuming its solvability, wegive in section2 a necessary and sucient condition for (1.1) to be solvable(theorem 2.3) by methods using the arithmetic of the order z2i of index2, included in the principal ring z+zi. in the remainder of section2, weestablish thatif(1.1)issolv
8、able, then±aisthenormofanelement ofz (proposition 2.6). next, we prove insection3that when isgiven, among allthepairsofpositivecoprimeoddintegers(a,b)satisfying=4a2+b2 ,thereisexactly onepair forwhich (1.1) issolvable (theorem 3.1). that unique pairwill be constructed (theorem 4.1) in section4
9、with the aid of the followingresultprovedin5.theorem1.1(thue). ifandareintegerssatisfying>1,gcd(,)=1,andmtheleastintegergreaterthan,thereexistxandyin0,msuchthaty±x(mod).when solutions exist, we show using any of them in section5 that (1.1)possessesaninnityofsolutions(theorem 5.1);afterwards,
10、wedescribeusingitafamily (proposition 5.2). wegive theconclusion ofourpaper insection6withsomenumerical examples.2. thecasea>1,oddnonsquare, and(1.5)solvable withv,w odd2.1. preliminaries. letv,wbeodd integersgreaterthanorequalto1suchthatv2w2=4.itisclearthatgcd(v,w)=1(2.1)becauseifv andw haveacom
11、monprimefactord,thenddividesv2w2=4and,therefore, ddividesalso2.write(1.5)intheformw2=(v+2i)(v2i).(2.2)thetwofactorsoftheright-handsideof(2.2)arerelativelyprimeinzisinceany common divisor would divide 4i, but w is odd, hence, gcd(w,4i) = 1.hence,inzi,wehavegcd(v+2i,v2i)=1.(2.3)moreover, since (1.5) i
12、s written in the form (2.2), we will manipulate the ele-ments of the nonmaximal order z2i of index 2, for which we have shown the diophantine equation ax2+2bxy4ay2=±12243(2.4)in3thatthehalfgroupfdenedbyf= v+2iz2i:gcd n(v+2i),2 =1isfactorial,wheren() denotesthenormof.thus,theremarkof2,propo-siti
13、on4appliedtofenablesustostatethefollowing denition.denition 2.1. anoddsolution(v,w)z2 of(1.5)issaidtobe(i) violainif,inf,b+2aidividesv+2iorv2i;(ii) monicif,inf,b+2ai=gcd(v+2i,)orgcd(v2i,).proposition 2.2. anyoddviolainsolution(v,w)z2 of(1.5)ismonic.2.2. onecriterionofsolvabilityfor(1.1). weprovethef
14、ollowingtheorem.theorem 2.3. ifa3andb1areoddintegers with gcd(a,2b)=1and=4a2+b2 nonsquare inz,thefollowing statements areequivalent:(i) (1.1)hasasolution(x,y)z2;(ii) (1.5)hasanoddviolainsolution(v,w)z2;(iii) theoddminimalsolution(v ,w )z2(v >0,w0>0)of(1.5)ismonic.000proof.(i)(ii).let(x,y)z2 be
15、asolutionof(1.1).weset=sgn ax2+2bxy4ay2 ,(2.5)v= bx28axy4by2 ,w=x2+4y2.asbandx areodd,v andw arealsoodd.thenwehavev+2i= bx28axy4by2 +2 ax2+2bxy4ay2 i(2.6)(2.7)sothatv+2i=(b+2ai)(x+2iy)2,whereweseethat(v,w)z2isanoddviolainsolutionof(1.5).further,takingthenormofthetwosidesof(2.7),weobtainx2+4y22=w2v2+
16、4= b2+4a2(2.8)sothat(v,w) isanoddintegersolutionof(1.5).(ii)(iii). let (v,w) z2 be an odd integer violain solution of (1.5). thenfromequality(2.7),wehavegcd(v+2i,)=(b+2ai)gcd (x+2iy)2,b2ai .(2.9)now,weshowthatgcd (x+2iy)2,b2ai =1.(2.10) 2244lionel bapounguÉifthereexistsf,isnotaunit,thatis,±
17、;1suchthat|x+2iy,|b2ai,(2.11)(2.12)thenas(2.7)impliesv= bx28axy4by2 ,w=x2+4y2,wededucedthat,inf,v b(2iy)28a(2iy)y4by28y2(b2ai)0(mod),w0(mod),(2.13)thatis,isalsoadivisorofvandw,contradictingthefactthatgcd(v,w)=1according to(2.1).hence,wehavegcd(v+2i,)=b+2ai.(2.14)thenweshowthat(2.14)istrueforv0arisin
18、gfromtheoddminimalsolutionof(1.5).as(v,w)isanoddsolutionof(1.5),wehavebythetheoryofthepellianequation2n+1v0+w0,ifv>0,2v+w=(2.15)2n+12v0w0,ifv<0,2forsomeintegern0.developing (2.15),weobtain2n+12n1w +···,20vifv>0,024nv=(2.16)n+1v02n1w02···, ifv<0,2n+1v022where
19、thetermsarealldivisiblebyexceptv02n+1.hence,asv024(mod),wehave( )nv0(mod),1ifv>0,v(2.17)(2.18)(1)n+1v0(mod), ifv<0.from(2.14)and(2.17),wededucethatb+2ai=gcd(v+2i,)=gcd ±v0+2i, =gcd v0±2 i,asrequired. thisprovesthat(v0,w0)isamonicsolutionof(1.5). the diophantine equation ax2+2bxy4ay2=
20、±12245(iii)(i).supposethat(v0,w0)isamonicsolutionof(1.5).theequalityv02w02=4(2.19)maybeexpressed intheformv0+2iv02ib2ai=w ,2(2.20)b+2ai0where,from(2.3),(v0+2i)/(b+2ai)and(v02i)/(b2ai)arecoprimeinf.hence,forsomeunit=±1andintegersx,y,wehavev0+2ib+2ai =(x+2iy)2,w0=x2+4y2.(2.21)takingv0+2i=(b+
21、2ai)(x+2iy)2(2.22)(2.23)andequating coecients ofionbothsidesof(2.22),weobtainax2+2bxy4ay2=,showingthat(x,y)z2 isasolutionof(1.1).remark 2.4. theproofabovealsoconrms thefollowing result.theorem 2.5. ifa3andb1areoddintegers with gcd(a,2b)=1and=4a2+b2 nonsquare inz,thefollowing statements areequivalent
22、:(i) (1.1)hasasolution(x,y)z2;(ii) (1.5)hasanoddviolainsolution(v,w)z2;(iii) (1.5)hasanoddmonicsolution(v,w)z2.wehavealsothefollowing proposition.proposition 2.6. let a3and b1beodd integers with gcd(a,2b)=1and = 4a2+b2 nonsquare in z. if the diophantine equation (1.1) has anysolution(x,y)z2 ,then
23、77; 14n x + , µ, z.a=±n y +µinotherwords,±a(resp.,±4a)isthenormofanelementofz.or(2.24)proof.wesupposethat(x,y)z2isanysolutionof(1.1).thentheequa-tionat2+2bty4ay2=0 (=±1)(2.25)(2.26)hasanintegerroot,henceitsdiscriminant isasquareinz:b2y2+4a2y2a=µ2, µz, 2246lion
24、el bapounguÉwhencea=y2 b2+4a2 µ2=y2µ2, µz,(2.27)(2.28)(2.29)sothata=n y +µ , µz.exchanging therolesofx andy,weobtainalso4a=n x + , z.3. uniqueness ofthepair(a,b),given. weassumeinthissectionthatisgivenandcanbefactorized intoseveralsumsoftwosquaresinz.thenweuse theorem 2
25、.3 to show that among all the pairs of positive integers (a,b),thereisexactlyonepairforwhich(1.1)issolvable.theorem3.1. letbeanoddnonsquarepositiveintegerforwhich(1.5)hasanoddsolution (v,w)z2.then among allthepairs ofoddpositive coprimeintegers (a,b) satisfying =4a2+b2,there is exactly one pair (a,b
26、)=(a,b)suchthat(1.1)issolvable.proof.itiveintegersaandb asfollows:let(v,w)z2 beanyoddviolainsolutionof(1.5).wedenepos-a=|a|,b=b.(3.1)letg=gcd(a,b) .thenv+2i=g(+2i) 1=g,(3.2)henceg=1.since(v,w)z2isanoddsolutionof(1.5),wehave5(mod8),andthusaandbareodd.hence,wehavegcd(a,b)=1(3.3)withbothaandb allodd.th
27、enweshowthat=4a2+b2.fromthedenition ofaandb,weseethatb+2ai|v+2iorv2i .hence,wemayassume,forexample,thatb+2ai|v+2i.then(1.5)maybeexpressedintheformv+2i (v2i)=b+2aib+2aiw2,(3.4)where (v+2i)/(b+2ai)and/(b+2ai)arecoprime elements off(since v, and b are odd). equation (3.4) shows that /(b+2ai) divides v2
28、i , but the diophantine equation ax2+2bxy4ay2=±1/(b+2ai)alsodivides,therefore /(b+2ai)divides2247(3.5)gcd(v2i,)=b2ai,inf,andso|b2+4a2.(3.6)ontheotherhand,sinceb+2ai|,takingconjugates, weobtainb2ai|.letzibeanyprimefactorofb+2aiandb2ai.thenwehaveb2+4a2.(3.7)since(v,w) isanyoddviolainsolutionof(1.
29、5),wehave v+2i v2i,b2ai,(3.8)b+2aiandasvb(mod2),2,lemma2appliedtozishowsthat=1,thentherelation(3.7)becomesb2+4a2|.(3.9)thus,=4a2+b2followsfrom(3.6)and(3.9).hence,=4a2+b2isadecom-positionofwhichsatisesstatement(ii)oftheorem 2.3.so,bytheorem2.3,theequationax2+2bxy4ay2=±1(3.10)issolvable. aandb ar
30、eunique.applying theorems 2.3(or2.5)and3.1,weobtainthefollowing corollary.corollary 3.2. if 5(mod8) is a prime number for which (1.5) is solv-able, d, e denote integers such that = 4d2+e2 (they are odd, unique, andpositive), thenthediophantine equationdx2+2exy4dy2=±1(3.11)issolvable.proof.this
31、results from the fact that any prime number of the form4m+1mayberepresented asthesumoftwosquares(cf.5).4. construction of (a,b), given. we show in this section how the pair(a,b) canbeconstructed. 2248lionel bapounguÉtheorem 4.1. letbeanoddnonsquare positive integer suchthat(1.5)issolvableinoddi
32、ntegers(v,w)z2.thenthereexistsauniquepairofcoprimeoddintegers(a,b)satisfyingb±av0(mod),0<a<,0<b<,(4.1)=4a2+b2.then,forthatuniquepair(a,b),(1.1)issolvablein(x,y)z2.proof.andb>0suchthattaking=vintheorem 1.1,weseethatthereexistintegersa>0b±av0(mod), a< , b<.(4.2)(4.3)(
33、4.4)since(v,)=1,wehaveb2+4a2a2v2+4a24a2+4a20(mod).but0<b2+4a2<5,hencetheequationsb2+4a2=2,3,4are insolvable in z since, modulus 4, the rst and the second congruencesb22,3areimpossible andthethirdimposesbtobeeven.hence,wehave=4a2+b2,(4.5)which veries 5(mod8)since (v,w) z2 isan odd solution of(1
34、.5), andthusaandbarebothodd.next,weshowthatif(a,b)satises(4.2)and(4.5),thengcd(a,b)=1.letg=gcd(a,b),andseta=ga,b=gb.then(4.5)becomes(b)2+4(a)2=1(4.6)with 1 = /g2. relations (4.2) show that there exists z such that b =±av+,andthusb=±av+g .replacing b in(4.6),weobtain1±av+g2+4(a)2=1,(4.
35、7)(4.8)1and,using(1.5),wededucefromitthatg w2(a)2±2av+2g1 =1,provingthatg=1. the diophantine equation ax2+2bxy4ay2=±12249now, we show that (a,b) is unique. we suppose that (a1,b1) is anothersolution of(4.2).thenfromcongruencesb+avb1+a1v0(mod)bavb1a1v0(mod),(4.9)(4.10)(4.11)(4.12)(4.13)orwe
36、seethatbb1+4aa10(mod),ab1a1b0(mod).fromtheproductofthetwofollowing expressions:b2+4a2=,b12+4a21=,wededucethatbb1+4aa1 +4 ab1a1b =222sothat(dividing by2)bb1+4aa1ab1a1b22=1,+4(4.14)whichgivesbb1+4aa1=±,relations (4.15)imposeab1a1b=0.(4.15)(4.16)a1,b1 =±(a,b).thus,thereexistsauniquesolutionof
37、(4.2)satisfying a>0,b>0.finally, our last assertion is to prove that (a,b) dened by (4.1) satisestheorem 2.3(ii).wesupposethatb±av0(mod).(4.17)(4.18)(4.19)asv24(mod),multiplying (4.17)byv,weobtainbv±av2±4a(mod),andso2±b+aviv±2i = bv±4ab+2ai 2250lionel bapoungu
38、1;isanelementoff .thusb+2ai|v±2i.(4.20)this proves that (v,w) is an odd violain solution of (1.5). so, from theorem2.3,(1.1)issolvableinintegers(x,y)z2.remark 4.2. denoting by (v0,w0) the odd minimal solution of (1.5), wecan easily determine a and b, such that b+2ai is the gcd(v0± 2i,) , u
39、singthefollowing algorithm:(1)(i) factorize inz;(ii) calculate thenormofv0+2iandfactorize itinz;(2) factorize theprimefactorsobtained inf;(3) deducefrom(2)thecommon divisorsofandv0+2i.5. complete set of solutions of (1.1). first of all, we prove the followingtheorem.theorem 5.1. undertheconditions o
40、ftheorem 2.3,thediophantine equa-tion(1.1)hasaninnityofsolutions inz.proof.gcd(x0,y0)=1,hencethereexists(a,b)z2 suchthatwe assume that (1.1) has a solution (x0,y0)z2. then we haveax0+by0=1.(5.1)(5.2)weset= xyx0 xy,y0g(x,y)=f(x,y)=ax2+2bxy4ay2.thengandf aretwoequivalent quadratic forms.furtherg(x,y)=
41、x22bxy cy2, b,cz,(5.3)(5.4)(5.5)with=ax02+2bx0y04ay02,b=(ab)x0+(b+4a)y0,c=a2+2b+4a2.buttheequationsf(x,y)=,g(x,y)= the diophantine equation ax2+2bxy4ay2=±12251(5.6)areequivalent, henceasg(x,y)=n(xy),whereisarootoftheequationt2bt+c=0,(5.7)weconcludethatiff(x,y)=hasasolutioninz,ithasaninnityofsol
42、utionsinz.now,wedescribethefamilyofsolutions of(1.1).proposition 5.2. under the conditions of theorem 2.3, let (x0,y0) be aparticular solutionof(1.1).thenthesetofsolutions (x,y) of(1.1)isgivenby3nv0+w20ax+by+y =±ax0+by0+y0(5.8)inwhich(v0,w0)istheminimalsolutionof(1.5)andnz.let (x0,y0) be a part
43、icular solution of (1.1). we show how all theproof.solutions(x,y) of(1.1)maybeobtainedintermsof(x0,y0)andtheminimalsolution(v0,w0)of(1.5).if(x,y) isanysolutionof(1.1)andifwesetax+by+yj=,(5.9)ax +by +y000thenormofj is(ax+by)2y2a ax2+2bxy4ay22 =,(5.10)2a ax2 2bx y4ay2ax +byy0+000000thatis,±1.more
44、over, j isoftheformd+e,wheredande areintegersgivenbyd=axx0+b xy0+x0y 4ayy0,e=x yxy .(5.11)00hence,bythetheoryofthepellianequation, wehavej=±,(5.12)3nv0+w02wherenz.thus,wehaveshowntheexistence ofaninteger nsuchthatwehave(5.8).conversely, let x and y be dened by (5.8) for some nz. taking normsofb
45、othsidesof(5.8),weseethatxandy verify(1.1).itremainstoshowthattheyarebothintegers. 2252lionel bapounguÉdeneintegersm andn bym+n =±.(5.13)3nv0+w2 0thenequating coecients in(5.8),weobtainax+by =m ax0+by0 +ny0,(5.14)(5.15)y=my0+n ax0+by.0clearly,yz.using=4a2 +b2,weobtainx=(mbn)x0+4any0,sothat
46、x isalsoaninteger.6. numerical examplesexample6.1. ifa=19andb=71,then=4(19)2+712=64855(mod8)isnonsquaresuchthat(v ,w )=(1369,17)istheminimalsolutionof(1.5).in00thiscase,gcd(1369+2i,6485)=71+38iandtheorem 2.3showsthat(1.1)issolvable; infact,itis19x2+142xy76y2=1(x,y)=(1,2)isasolution).example 6.2. if
47、a = 3 and b = 5, then = 4(3)2+52 = 61 5(mod8)is prime such that (v,w) =(39,5) is a solution of (1.5); corollary 3.2 showsthat (1.1) is solvable; in fact, it is 3x2+10xy12y2=1 (x,y) =(1,1) is asolution).example 6.3. in case =2941=4(25)2+212=4(27)2+52, we have 5(mod8)nonsquare suchthat(v ,w )=(705,13)
48、istheminimal solution of00(1.5).asgcd(7054+2i,2941)=2150i,theorems2.3and3.1showthat(1.1)issolvable onlyinthecasewhen(a,b)=(25,21);infact,itis25x2+42xy100y2=1(x,y)=(3,1)isasolution).theequation 27x2+10xy108y2=±1isinsolvable.example 6.4. take =3077. we have 5(mod8) nonsquare such that(v ,w )=(943
49、,17) is the minimal solution of (1.5). the candidates for the00unique pair (a,b) satisfying (4.1) must be solutions of =4a2+b2. that is,(a,b) = ±(13,49),±(23,31). the only pair satisfying b+av 0(mod) is0(a,b)=(13,49)sothat(13,49)istheunique pairforwhich (1.1) issolvable;infact,itis13x2+98x
50、y52y2=1(x,y)=(1,2)isasolution).theequation 23x2+62xy92y2=±1isinsolvable.references1l. bapoungué, sur la résolubilité de léquation diophantienne ax2 +2bxy kay2 =±1 on the solvability of the diophantine equation ax2+2bxy the diophantine equation ax2+2bxy4ay2=±12253ka
51、y2 =±1, c. r. acad. sci. paris sér. i math. 309 (1989), no. 5, 235238(french).23, un critère de résolution pour léquation diophantienne ax2+2bxy kay2=±1 a criterion for the solution of the diophantine equation ax2+2bxykay2=±1,exposition. math. 16(1998), no.3,249262 (french).,factorisation dans unordre non maximal dun corps quadratique factor-ization in a nonmaximal order of a quadratic eld, exposition. math. 20(2002), no.1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療器械產品代理協(xié)議書
- 法律知識合同法重點問題解答與測試
- 建設施工三方合同
- 2025年新鄉(xiāng)貨運從業(yè)資格證模擬考試系統(tǒng)
- 項目進度會議紀要及下一步行動計劃
- 人力資源行業(yè)培訓效果評估表
- 《煤礦電工學》第二章井下供電安全技術課件
- 2025年湖州貨運資格證安檢考試題
- 股份制企業(yè)合作框架協(xié)議與文書撰寫指南
- 三農產品加工及流通指南
- 2025天津市安全員-B證考試題庫附答案
- 二年級下冊數學口算題-可打印
- 新風施工合同
- 2025-2030年園藝修剪機器人行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 人教版四年級數學下冊第四單元測試卷(含答案)
- 2025年湖北省技能高考(建筑技術類)《建筑工程測量》模擬練習試題庫(含答案)
- 2023年中國綜合社會調查調查手冊
- 2024-2027年中國網絡安全評估行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略研究報告
- 失智老年人照護X證書制度試點工作養(yǎng)老護理職業(yè)和失智老人照護員工種的發(fā)展講解
- 2025年湖南食品藥品職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年安徽職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
評論
0/150
提交評論