




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、模式識別及其應(yīng)用主講 練秋生引 言 與模式識別相關(guān)的學(xué)科 統(tǒng)計學(xué) 概率論 線性代數(shù)(矩陣計算) 形式語言 機(jī)器學(xué)習(xí) 人工智能 圖像處理 計算機(jī)視覺 教學(xué)方法 著重講述模式識別的基本概念,基本方法和算法原理。 注重理論與實踐緊密結(jié)合 避免引用過多的、繁瑣的數(shù)學(xué)推導(dǎo)。 教學(xué)目標(biāo) 掌握模式識別的基本概念和方法 有效地運用所學(xué)知識和方法解決實際問題 為研究新的模式識別的理論和方法打下基礎(chǔ) 題外話 基本:完成課程學(xué)習(xí),通過考試,獲得學(xué)分。 提高:多看最新的參考文獻(xiàn)(Engnish)能夠?qū)⑺鶎W(xué)知識和內(nèi)容用于課題研究,解決實際問題。 飛躍:通過模式識別的學(xué)習(xí),改進(jìn)思維方式,為將來的工作打好基礎(chǔ),終身受益。教
2、材/參考文獻(xiàn) R. Duda, P. Hart, D. Stork, Pattern Classification, second edition, 2000(有中譯本). 邊肇祺,模式識別(第二版),清華大學(xué)出版社,2000。 蔡元龍,模式識別,西北電訊工程學(xué)院出版社,1986。機(jī)構(gòu)、會議、刊物 1973年 IEEE發(fā)起了第一次關(guān)于模式識別的國際會議“ICPR”(此后兩年一次),成立了國際模式識別協(xié)會-“IAPR” 1977年IEEE成立PAMI委員會,創(chuàng)立IEEE Trans. on PAMI,并支持ICCV, CVPR兩個會議 其他刊物 Pattern Recognition (PR)
3、Pattern Recognition Letters (PRL) Pattern Analysis and Application (PAA) International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)第一章 模式識別概論什么是模式(Pattern)?什么是模式? 廣義地說,存在于時間和空間中可觀察的物體,如果我們可以區(qū)別它們是否相同或是否相似,都可以稱之為模式。 模式所指的不是事物本身,而是從事物獲得的信息,因此,模式往往表現(xiàn)為具有時間和空間分布的信息。 模式空間:所有樣本觀察數(shù)據(jù)的集合
4、,一般維數(shù)很大。 模式的直觀特性: 可觀察性 可區(qū)分性 相似性模式識別的概念 模式識別 直觀,無所不在,“人以類聚,物以群分” 周圍物體的認(rèn)知:桌子、椅子 人的識別:張三、李四 聲音的辨別:汽車、火車,狗叫、人語 氣味的分辨:炸帶魚、紅燒肉 人和動物的模式識別能力是極其平常的,但對計算機(jī)來說卻是非常困難的。 定義:試圖確定一個樣本的類別歸屬,即把某一樣本歸屬為多個類型中的某一類型。模式識別的研究 目的:利用計算機(jī)對物理對象進(jìn)行分類,在錯誤概率最小的條件下,使識別的結(jié)果盡量與客觀物體相符合。 Y = F(X)X的定義域取自特征空間Y的值域為類別的標(biāo)號集F是模式識別的判別方法模式識別簡史 1929
5、年 G. Tauschek發(fā)明閱讀機(jī) ,能夠閱讀0-9的數(shù)字。 30年代 Fisher提出統(tǒng)計分類理論,奠定了統(tǒng)計模式識別的基礎(chǔ)。 50年代 Noam Chemsky 提出形式語言理論傅京蓀 提出句法結(jié)構(gòu)模式識別。 60年代 L.A.Zadeh提出了模糊集理論,模糊模式識別方法得以發(fā)展和應(yīng)用。 80年代以Hopfield網(wǎng)、BP網(wǎng)為代表的神經(jīng)網(wǎng)絡(luò)模型導(dǎo)致人工神經(jīng)元網(wǎng)絡(luò)復(fù)活,并在模式識別得到較廣泛的應(yīng)用。 90年代小樣本學(xué)習(xí)理論,支持向量機(jī)也受到了很大的重視。模式識別的應(yīng)用(舉例) 生物學(xué) 自動細(xì)胞學(xué)、染色體特性研究、遺傳研究 天文學(xué) 天文望遠(yuǎn)鏡圖像分析、自動光譜學(xué) 經(jīng)濟(jì)學(xué) 股票交易預(yù)測、企業(yè)行
6、為分析 醫(yī)學(xué) 心電圖分析、腦電圖分析、醫(yī)學(xué)圖像分析模式識別的應(yīng)用(舉例) 工程 產(chǎn)品缺陷檢測、特征識別、語音識別、自動導(dǎo)航系統(tǒng)、污染分析 軍事 航空攝像分析、雷達(dá)和聲納信號檢測和分類、自動目標(biāo)識別 安全 指紋識別、人臉識別、監(jiān)視和報警系統(tǒng)模式識別方法 模式識別系統(tǒng)的目標(biāo):在特征空間和解釋空間之間找到一種映射關(guān)系,這種映射也稱之為假說。 特征空間:從模式得到的對分類有用的度量、屬性或基元構(gòu)成的空間。它是特征向量的集合(即特征向量是特征空間的一點) 解釋空間:將c個類別表示為其中 為所屬類別的集合,稱為解釋空間。 假說的兩種獲得方法 監(jiān)督學(xué)習(xí)、概念驅(qū)動或歸納假說:在特征空間中找到一個與解釋空間的結(jié)
7、構(gòu)相對應(yīng)的假說。在給定模式下假定一個解決方案,任何在訓(xùn)練集中接近目標(biāo)的假說也都必須在“未知”的樣本上得到近似的結(jié)果。 依靠已知所屬類別的的訓(xùn)練樣本集,按它們特征向量的分布來確定假說 (通常為一個判別函數(shù)),只有在判別函數(shù)確定之后才能用它對未知的模式進(jìn)行分類; 對分類的模式要有足夠的先驗知識,通常需要采集足夠數(shù)量的具有典型性的樣本進(jìn)行訓(xùn)練。假說的兩種獲得方法(續(xù)) 非監(jiān)督學(xué)習(xí)、數(shù)據(jù)驅(qū)動或演繹假說:在解釋空間中找到一個與特征空間的結(jié)構(gòu)相對應(yīng)的假說。這種方法試圖找到一種只以特征空間中的相似關(guān)系為基礎(chǔ)的有效假說。 在沒有先驗知識的情況下,通常采用聚類分析方法,基于“物以類聚”的觀點,用數(shù)學(xué)方法分析各特
8、征向量之間的距離及分散情況; 如果特征向量集聚集若干個群,可按群間距離遠(yuǎn)近把它們劃分成類; 這種按各類之間的親疏程度的劃分,若事先能知道應(yīng)劃分成幾類,則可獲得更好的分類結(jié)果。模式分類的主要方法 數(shù)據(jù)聚類 統(tǒng)計分類 結(jié)構(gòu)模式識別 神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)聚類 目標(biāo):用某種相似性度量的方法將原始數(shù)據(jù)組織成有意義的和有用的各種數(shù)據(jù)集。 是一種非監(jiān)督學(xué)習(xí)的方法,解決方案是數(shù)據(jù)驅(qū)動的。統(tǒng)計分類 基于概率統(tǒng)計模型得到各類別的特征向量的分布,以取得分類的方法。 特征向量分布的獲得是基于一個類別已知的訓(xùn)練樣本集。 是一種監(jiān)督分類的方法,分類器是概念驅(qū)動的。結(jié)構(gòu)模式識別 該方法通過考慮識別對象的各部分之間的聯(lián)系來達(dá)到識別分
9、類的目的。 識別采用結(jié)構(gòu)匹配的形式,通過計算一個匹配程度值(matching score)來評估一個未知的對象或未知對象某些部分與某種典型模式的關(guān)系如何。 當(dāng)成功地制定出了一組可以描述對象部分之間關(guān)系的規(guī)則后,可以應(yīng)用一種特殊的結(jié)構(gòu)模式識別方法 句法模式識別,來檢查一個模式基元的序列是否遵守某種規(guī)則,即句法規(guī)則或語法。神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)是受人腦組織的生理學(xué)啟發(fā)而創(chuàng)立的。 由一系列互相聯(lián)系的、相同的單元(神經(jīng)元)組成。相互間的聯(lián)系可以在不同的神經(jīng)元之間傳遞增強(qiáng)或抑制信號。 增強(qiáng)或抑制是通過調(diào)整神經(jīng)元相互間聯(lián)系的權(quán)重系數(shù)來(weight)實現(xiàn)。 神經(jīng)網(wǎng)絡(luò)可以實現(xiàn)監(jiān)督和非監(jiān)督學(xué)習(xí)條件下的分類。模式識
10、別系統(tǒng) 模式識別系統(tǒng)的基本構(gòu)成數(shù)據(jù)獲取特征提取和選擇預(yù)處理分類決策分類器設(shè)計模式識別系統(tǒng)組成單元 數(shù)據(jù)獲?。河糜嬎銠C(jī)可以運算的符號來表示所研究的對象 二維圖像:文字、指紋、地圖、照片等 一維波形:腦電圖、心電圖、季節(jié)震動波形等 物理參量和邏輯值:體溫、化驗數(shù)據(jù)、參量正常與否的描述 預(yù)處理單元:去噪聲,提取有用信息,并對輸入測量儀器或其它因素所造成的退化現(xiàn)象進(jìn)行復(fù)原模式識別系統(tǒng)組成單元 特征提取和選擇:對原始數(shù)據(jù)進(jìn)行變換,得到最能反映分類本質(zhì)的特征 測量(模式)空間:原始數(shù)據(jù)組成的空間 特征空間:分類識別賴以進(jìn)行的空間 模式表示:維數(shù)較高的模式空間-維數(shù)較低的特征空間 分類決策:在特征空間中用模
11、式識別方法把被識別對象歸為某一類別 基本做法:在樣本訓(xùn)練集基礎(chǔ)上確定某個判決規(guī)則,使得按這種規(guī)則對被識別對象進(jìn)行分類所造成的錯誤識別率最小或引起的損失最小模式識別過程實例 在傳送帶上用光學(xué)傳感器件對魚按品種分類鱸魚(Seabass)品種鮭魚(Salmon)識別過程 數(shù)據(jù)獲取:架設(shè)一個攝像機(jī),采集一些樣本圖像,獲取樣本數(shù)據(jù) 預(yù)處理:去噪聲,用一個分割操作把魚和魚之間以及魚和背景之間分開識別過程 特征提取和選擇:對單個魚的信息進(jìn)行特征選擇,從而通過測量某些特征來減少信息量 長度 亮度 寬度 魚翅的數(shù)量和形狀 嘴的位置,等等 分類決策:把特征送入決策分類器模式分類器的獲取和評測過程 數(shù)據(jù)采集 特征選
12、取 模型選擇 訓(xùn)練和測試 計算結(jié)果和復(fù)雜度分析,反饋訓(xùn)練和測試 訓(xùn)練集:是一個已知樣本集,在監(jiān)督學(xué)習(xí)方法中,用它來開發(fā)出模式分類器。 測試集:在設(shè)計識別和分類系統(tǒng)時沒有用過的獨立樣本集。 系統(tǒng)評價原則:為了更好地對模式識別系統(tǒng)性能進(jìn)行評價,必須使用一組獨立于訓(xùn)練集的測試集對系統(tǒng)進(jìn)行測試。實例:統(tǒng)計模式識別 19名男女同學(xué)進(jìn)行體檢,測量了身高和體重,但事后發(fā)現(xiàn)其中有4人忘記填寫性別,試問(在最小錯誤的條件下)這4人是男是女?體檢數(shù)值如下:實例:統(tǒng)計模式識別(續(xù)) 待識別的模式:性別(男或女) 測量的特征:身高和體重 訓(xùn)練樣本:15名已知性別的樣本特征 目標(biāo):希望借助于訓(xùn)練樣本的特征建立判別函數(shù)(
13、即數(shù)學(xué)模型)實例:統(tǒng)計模式識別(續(xù)) 由訓(xùn)練樣本得到的特征空間分布圖實例:統(tǒng)計模式識別(續(xù)) 從圖中訓(xùn)練樣本的分布情況,找出男、女兩類特征各自的聚類特點,從而求取一個判別函數(shù)(直線或曲線)。 只要給出待分類的模式特征的數(shù)值,看它在特征平面上落在判別函數(shù)的哪一側(cè),就可以判別是男還是女了。實例:句法模式識別 問題:如何利用對圖像的結(jié)構(gòu)信息描述,識別如下所示圖片:實例:句法模式識別(續(xù)) 將整個場景圖像結(jié)構(gòu)分解成一些比較簡單的子圖像的組合; 子圖像又用一些更為簡單的基本圖像單元來表示,直至子圖像達(dá)到了我們認(rèn)為的最簡單的圖像單元(基元); 所有這些基元按一定的結(jié)構(gòu)關(guān)系來表示,利用多級樹結(jié)構(gòu)對其進(jìn)行描述
14、(這種描述可以采用形式語言理論)。實例:句法模式識別(續(xù)) 多級樹描述結(jié)構(gòu)實例:句法模式識別(續(xù)) 訓(xùn)練過程: 用已知結(jié)構(gòu)信息的圖像作為訓(xùn)練樣本,先識別出基元(比如場景圖中的X、Y、Z等簡單平面)和它們之間的連接關(guān)系(例如長方體E是由X、Y和Z三個面拼接而成),并用字母符號代表之; 然后用構(gòu)造句子的文法來描述生成這幅場景的過程,由此推斷出生成該場景的一種文法。實例:句法模式識別(續(xù)) 識別過程: 先對未知結(jié)構(gòu)信息的圖像進(jìn)行基元提取及其相互結(jié)構(gòu)關(guān)系的識別; 然后用訓(xùn)練過程獲得的文法做句法分析; 如果能被已知結(jié)構(gòu)信息的文法分析出來,則該幅未知圖像與訓(xùn)練樣本具有相同的結(jié)構(gòu)(識別成功),否則就不是這種結(jié)構(gòu)(識別失?。O嚓P(guān)數(shù)學(xué)概念 隨機(jī)向量及其分布 隨機(jī)向量 如果一個對象的特征觀察值為x1, x2, , xn,它可構(gòu)成一個n維的特征向量值x,即 x = (x1, x2, , xn)T 式中, x1, x2, , xn為特征向量x的各個分量。 一個特征向量可以看作n維空間中的向量或點,此空間稱為模式的特征空間Rn。相關(guān)數(shù)學(xué)概念 隨機(jī)向量及其分布 隨機(jī)向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025技術(shù)服務(wù)合同模板2
- 砂輪使用安全
- 春節(jié)前工廠安全培訓(xùn)2
- 《商品采購業(yè)務(wù)》課件
- 2024年09月浙江醫(yī)療衛(wèi)生招聘臺州仙居縣中醫(yī)院醫(yī)共體招聘編外工作人員8人筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 重大突發(fā)事件情景構(gòu)建與應(yīng)急準(zhǔn)備
- 常用電器元器件選型及依據(jù)
- 2024年09月河北巨鹿縣事業(yè)單位招聘35人(含醫(yī)療崗)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 2025用人單位不得撤銷合同條款的規(guī)定
- 鏈?zhǔn)酵栖嚈C(jī)產(chǎn)品介紹
- (正式版)JBT 14694-2024 電氣絕緣用合成有機(jī)酯與結(jié)構(gòu)材料的相容性試驗方法
- 小學(xué)校園百日攻堅行動方案設(shè)計
- 遼寧大連市濱城高中聯(lián)盟2023-2024學(xué)年高一下學(xué)期4月月考數(shù)學(xué)試卷
- 芯片銷售入職培訓(xùn)課件
- 《關(guān)于勞動合同制職工工齡計算問題的復(fù)函》(勞社廳函〔2002〕323 號)
- 《他汀不耐受的臨床診斷與處理專家共識》解讀
- 2024年鄭州信息科技職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 蘇丹草品種與栽培技術(shù)
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 安全設(shè)備設(shè)施與個人防護(hù)用品的使用和維護(hù)課件
- 【ABC分類管理法在吉利汽車企業(yè)庫存管理中的應(yīng)用分析案例報告7200字(論文)】
評論
0/150
提交評論