版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 重重 點點 回回 顧顧 l 熱力學第二定律的經(jīng)典表述熱力學第二定律的經(jīng)典表述 克勞休斯說法克勞休斯說法 :不可能把熱由低溫物體轉(zhuǎn):不可能把熱由低溫物體轉(zhuǎn)移到高溫物體,而不留下其他變化。移到高溫物體,而不留下其他變化。 開爾文說法開爾文說法:不可能從單一熱源吸熱使之完全變:不可能從單一熱源吸熱使之完全變?yōu)楣?,而不留下其他變化。為功,而不留下其他變化。各種熵變的計算 能否找到一個統(tǒng)一的判據(jù)來判斷可能能否找到一個統(tǒng)一的判據(jù)來判斷可能發(fā)生的過程的方向和限度呢?發(fā)生的過程的方向和限度呢? 熵判據(jù)熵判據(jù)各種熵變的計算推廣到任意循環(huán)過程推廣到任意循環(huán)過程1. 定義定義1.10 熵熵02211tqtq不可逆
2、熱機不可逆熱機可逆熱機可逆熱機0sutq不可逆熱機不可逆熱機可逆熱機可逆熱機或或0sutq不可逆熱機不可逆熱機可逆熱機可逆熱機各種熵變的計算克勞休斯定理克勞休斯定理沿任意可逆循環(huán)閉積分等于零,沿任意可逆循環(huán)閉積分等于零,沿任意不可逆循環(huán)的閉積分總是小于零。沿任意不可逆循環(huán)的閉積分總是小于零。sutq熱溫商熱溫商 0suirtq不可逆循環(huán)不可逆循環(huán) 0surtq 可逆循環(huán)可逆循環(huán)0sutq不可逆熱機不可逆熱機可逆熱機可逆熱機各種熵變的計算積分定理:若封閉曲線閉積分等于零,則被積變積分定理:若封閉曲線閉積分等于零,則被積變量應(yīng)為某狀態(tài)函數(shù)的全微分量應(yīng)為某狀態(tài)函數(shù)的全微分tqr是某狀態(tài)函數(shù)的全微分是
3、某狀態(tài)函數(shù)的全微分令該狀態(tài)函數(shù)以令該狀態(tài)函數(shù)以s 表示,稱為表示,稱為熵熵tqsrd 0rtq可逆循環(huán)可逆循環(huán)熵的定義式熵的定義式各種熵變的計算熵熵 是狀態(tài)函數(shù)是狀態(tài)函數(shù) 是廣度性質(zhì)是廣度性質(zhì) si單位單位 jk1 21 r12tqssstqsrd熵的物理意義熵的物理意義待討論待討論各種熵變的計算不可逆循環(huán)過程不可逆循環(huán)過程: :abrir0abrbasuirtqtq2. 熱力學第二定律的數(shù)學表達式熱力學第二定律的數(shù)學表達式s 0suirtqbarbasuirtqtqbarabrtqtq可逆過程的特點:系統(tǒng)和環(huán)境能夠由終態(tài),沿著原可逆過程的特點:系統(tǒng)和環(huán)境能夠由終態(tài),沿著原來的途徑從相反方向步
4、步回復,直到都恢復原來的來的途徑從相反方向步步回復,直到都恢復原來的狀態(tài)狀態(tài)各種熵變的計算basuirtqsbartqs即即合并表示合并表示sudtqs 不可逆過程不可逆過程可逆過程可逆過程basutqs不可逆過程不可逆過程可逆過程可逆過程熱力學第二定律數(shù)學表達式熱力學第二定律數(shù)學表達式各種熵變的計算(1) 熵增原理熵增原理熵增原理數(shù)學表示式熵增原理數(shù)學表示式絕熱過程絕熱過程s0不可逆過程不可逆過程可逆過程可逆過程3. 熵增原理和熵判據(jù)熵增原理和熵判據(jù) 系統(tǒng)經(jīng)絕熱過程由一個狀態(tài)達到另一個狀態(tài),熵值系統(tǒng)經(jīng)絕熱過程由一個狀態(tài)達到另一個狀態(tài),熵值不減少不減少 熵增原理熵增原理basutqs不可逆過程
5、不可逆過程可逆過程可逆過程各種熵變的計算隔離系統(tǒng),隔離系統(tǒng),q 0 (2) 熵判據(jù)熵判據(jù)隔離系統(tǒng),隔離系統(tǒng),w 0 所以,隔離系統(tǒng)的不可逆過程是自發(fā)過程所以,隔離系統(tǒng)的不可逆過程是自發(fā)過程可逆過程是無限慢的變化,實際是平衡態(tài)可逆過程是無限慢的變化,實際是平衡態(tài)s隔隔0不可逆過程不可逆過程可逆過程可逆過程各種熵變的計算平衡的熵判據(jù)平衡的熵判據(jù)s = 0狀態(tài)狀態(tài)a狀態(tài)狀態(tài)b隔離系統(tǒng)隔離系統(tǒng)s 0a 、b平衡態(tài)平衡態(tài)自發(fā)從自發(fā)從a 變到變到b的趨勢的趨勢s隔隔0 自發(fā)過程自發(fā)過程 平衡態(tài)平衡態(tài)s 0不可能發(fā)生不可能發(fā)生(只能用于隔離系統(tǒng)!)(只能用于隔離系統(tǒng)?。└鞣N熵變的計算系統(tǒng)熵變的計算系統(tǒng)熵變的
6、計算1.11 熵變的計算之一熵變的計算之一牢牢掌握牢牢掌握: : s是狀態(tài)函數(shù);是狀態(tài)函數(shù);s與變化途徑無關(guān)與變化途徑無關(guān) 了解什么過程是可逆過程了解什么過程是可逆過程21rtqs 各種熵變的計算l p、v、t 變化除絕熱過程外,均可沿可逆過變化除絕熱過程外,均可沿可逆過程變化也可沿不可逆過程;程變化也可沿不可逆過程; 從某一狀態(tài)經(jīng)絕熱可逆過程變至某一終態(tài),從某一狀態(tài)經(jīng)絕熱可逆過程變至某一終態(tài),則從同一始態(tài)經(jīng)絕熱不可逆過程變不到同一終態(tài),則從同一始態(tài)經(jīng)絕熱不可逆過程變不到同一終態(tài),反之亦然。反之亦然。l 一般條件下發(fā)生的化學反應(yīng),都是不可逆過程。一般條件下發(fā)生的化學反應(yīng),都是不可逆過程。可可
7、逆逆 過過 程程l相平衡條件下發(fā)生的相變化是可逆過程,否相平衡條件下發(fā)生的相變化是可逆過程,否則是不可逆過程。則是不可逆過程。各種熵變的計算(1) 單純單純 p,v,t 變化過程熵變的計算變化過程熵變的計算(i) 定壓變溫定壓變溫21dm,ttppttnctqs若若cp,m視為常數(shù),則視為常數(shù),則 qp dh ncp,mdt12m,lnttncsp 實際氣體,液體或固體的實際氣體,液體或固體的 p,v,t 變化變化若若cp,m不為常數(shù)?不為常數(shù)?各種熵變的計算(ii) 定容變溫定容變溫21dm,ttvvttnctqsnc,mdt qv du若若c,m視為常數(shù),則視為常數(shù),則12m,lnttnc
8、sv各種熵變的計算 定定t,而,而p,v變化不大時,液、固體的熵變很小,變化不大時,液、固體的熵變很小, s 0。(iii) 液體或固體定溫下液體或固體定溫下 p,v 變化變化 實際氣體,定實際氣體,定t,而,而p,v變化時,熵變較大變化時,熵變較大 本課程不討論本課程不討論各種熵變的計算 理想氣體的理想氣體的 p,v,t 變化變化 w0tvputqsdddrvvnrttncsvdddm,duncv ,mdt,則,則若若 cv ,m為常數(shù)為常數(shù),)lnln(1212m,vvrttcnsv各種熵變的計算 p,v,t p,v,t 定容定容 p,v,t 定溫定溫)lnln(1212m,vvrttcn
9、sv定容定容 定溫定溫 (t1,v1 t2,v2)各種熵變的計算 p,v,t p,v,t 定壓定壓 p1,v ,t 定溫定溫 (t1, p1 t2, p2)lnln(2112m,pprttcnsp定壓定壓 定溫定溫各種熵變的計算 p,v,t p,v,t 定容定容 p2,v1,t 定壓定壓(v1, p1 v2, p2)定容定容 定壓定壓)lnln(12m,12m,vvcppcnspv各種熵變的計算 練習練習1. 21dm,ttppttnctqs 21)d(2ttttctbtan )(2)(ln(21221212ttcttbttan 2molh2由由300k,100kpa定壓加熱到定壓加熱到120
10、0k,求求s 已知已知cp,m(h2) / (jk-1 mol-1 )= 28.830.8410-3(t/k)2.0010-6(t/k)2各種熵變的計算 練習練習2 12lnvvnrs 21lnppnr 113kj86.114kj1101ln314.82 2mol h2由由300k,1.0mpa分別經(jīng)下述三種不分別經(jīng)下述三種不同徑途變到同徑途變到300k,1.0kpa求經(jīng)各種變化系統(tǒng)求經(jīng)各種變化系統(tǒng)的的s。(1)自由膨脹;)自由膨脹; (2)恒溫可逆膨脹;)恒溫可逆膨脹; (3)作最大功的)作最大功的50% 。各種熵變的計算練習練習30s 1mol單原子理想氣體,從單原子理想氣體,從273.1
11、5k、1013.25kpa的始態(tài),經(jīng)絕熱可逆膨脹至終態(tài)的始態(tài),經(jīng)絕熱可逆膨脹至終態(tài)壓力為壓力為101.325kpa ,求,求s各種熵變的計算 1mol單原子理想氣體,從單原子理想氣體,從273.15k、1 0 1 3 . 2 5 k p a 的 始 態(tài) , 對 抗 恒 外 壓 為的 始 態(tài) , 對 抗 恒 外 壓 為101.325kpa,絕熱膨脹至終態(tài)壓力為,絕熱膨脹至終態(tài)壓力為101.325kpa ,求,求s練習練習4 各種熵變的計算wu ttncuttvd)(21 m,)(12suvvpw)()(1122su12m,pnrtpnrtpttncv)()(231122212ptptpttk8
12、.1742t0q解:解:各種熵變的計算2112m,lnlnppnrttncsp(t1, p1 t2, p2)1 -k86j. 9325.10125.1013ln115.2738 .174ln)23(1rrr各種熵變的計算(3) 理想氣體定溫,定壓下的混合理想氣體定溫,定壓下的混合22121211mixlnlnvvvrnvvvrnsa,n(a)t,p,v1b,n(b)t,p,v2n(a)+n(b)t,p,(v1+ v2)a-b應(yīng)用條件:宏觀性質(zhì)不同的理想氣體的混合。應(yīng)用條件:宏觀性質(zhì)不同的理想氣體的混合。宏觀性質(zhì)相同的理想氣體的混合宏觀性質(zhì)相同的理想氣體的混合0mixs各種熵變的計算練習練習4
13、22121211mixlnlnvvvrnvvvrns1k76j. 52 .114 .22ln5 . 02 .114 .22ln5 . 0rr 設(shè)在恒溫設(shè)在恒溫273k時,將一個時,將一個22.4dm3的盒子的盒子用隔板從中間隔開。一方放用隔板從中間隔開。一方放0.5molo2,另,另一方放一方放0.5moln2,抽去隔板后,兩種氣體,抽去隔板后,兩種氣體均勻混合。求過程的均勻混合。求過程的s各種熵變的計算2. 相變化過程熵變的計算相變化過程熵變的計算(1) 在平衡溫度,壓力下的相變在平衡溫度,壓力下的相變thns)(m相變焓相平衡條件下發(fā)生的相變化是可逆過程相平衡條件下發(fā)生的相變化是可逆過程各
14、種熵變的計算(2) 非平衡溫度,壓力下的相變非平衡溫度,壓力下的相變不可逆的相變過程,需尋求可逆途徑不可逆的相變過程,需尋求可逆途徑不可逆相變b(,t1,p1)b(,t2,p2)s=?b(,teq,peq)b(, teq,peq)可逆相變s2s1s3則則 s s s s各種熵變的計算尋求可逆途徑的依據(jù):尋求可逆途徑的依據(jù):l 途徑中的每一步必須可逆;途徑中的每一步必須可逆;l 途徑中每步途徑中每步 s 的計算有相應(yīng)的公式可以利用;的計算有相應(yīng)的公式可以利用;l 有每步有每步 s 計算式所需的熱數(shù)據(jù)。計算式所需的熱數(shù)據(jù)。各種熵變的計算練習練習5. thns)(m相變焓11k218jkkj15.3
15、7367.402 2molh2o(l,100,101.325kpa)在定溫定壓下汽在定溫定壓下汽化為化為h2o(g,100,101.325kpa) 求該過程的求該過程的 s 。 已知已知100水的汽化焓為水的汽化焓為40.67 kjmol-1各種熵變的計算練習練習6. 2mol h2o( l,25,101.325kpa )在定溫定壓下在定溫定壓下汽化為汽化為h2o( g,25,101.325kpa ) 求該過程的求該過程的 s 。已知。已知100水的汽化焓為水的汽化焓為40.67kjmol-1 ,水和水水和水蒸氣的定壓摩爾熱容分別為蒸氣的定壓摩爾熱容分別為75.31j k-1 mol-1和和3
16、3.6 j k-1 mol-1 各種熵變的計算21 m,1d)(ttptttncs321ssss12m,lnttncp11kj79.33kj15.29815.373ln31.752h2o(l,100,101.325kpa )h2o( g,100,101.325kpa ) s1 s3 s = ?h2o(l,25,101.325kpa)h2o(g,25,101.325kpa ) s各種熵變的計算學習了熵判據(jù)學習了熵判據(jù)非隔離系統(tǒng)非隔離系統(tǒng) + + 環(huán)境環(huán)境新系統(tǒng)(大系統(tǒng));新系統(tǒng)(大系統(tǒng)); 隔離系統(tǒng)隔離系統(tǒng)s(系統(tǒng))(系統(tǒng))+ s(環(huán)境)(環(huán)境)非隔離系統(tǒng)怎么辦?非隔離系統(tǒng)怎么辦?=s(新的隔離
17、系統(tǒng))(新的隔離系統(tǒng))?pvt變化及變化及相變化會求相變化會求s隔隔0 自發(fā)過程自發(fā)過程 平衡態(tài)平衡態(tài)各種熵變的計算 對封閉系統(tǒng),每個熱源都可看作足夠大且體積固定,對封閉系統(tǒng),每個熱源都可看作足夠大且體積固定,溫度始終均勻,保持不變,即熱源的變化總是可逆的溫度始終均勻,保持不變,即熱源的變化總是可逆的tsu不變,不變,sususuqstsusysutqs 環(huán)境熵變的計算環(huán)境熵變的計算1.11 熵變的計算之二熵變的計算之二sususudtqs各種熵變的計算練習練習6. s(系統(tǒng))(系統(tǒng))+ s(環(huán)境)(環(huán)境) =s(新的隔離系統(tǒng))(新的隔離系統(tǒng))s隔隔0 自發(fā)過程自發(fā)過程 平衡態(tài)平衡態(tài) 2mol
18、h2o(l,25,101.325kpa)在定溫定壓下汽在定溫定壓下汽化為化為h2o(g,25,101.325kpa)用熵判據(jù)判斷該用熵判據(jù)判斷該過程能否自動進行過程能否自動進行? 已知已知100水的汽化焓為水的汽化焓為40.67kjmol-1 ,水水和水蒸氣的定壓摩爾熱容分別為和水蒸氣的定壓摩爾熱容分別為75.31j k-1 mol-1和和33.6 j k-1 mol-1 各種熵變的計算練習練習5. 1321syskj71.236ssss 2molh2o(l,25,101.325kpa)在定溫定壓下汽在定溫定壓下汽化為化為h2o(g,25,101.325kpa) 求該過程的求該過程的 s 。
19、已知已知100水的汽化焓為水的汽化焓為40.67kjmol-1 ,水和水和水蒸氣的定壓摩爾熱容分別為水蒸氣的定壓摩爾熱容分別為75.31j k-1 mol-1和和33.6 j k-1 mol-1 各種熵變的計算 h2 h2o(l,100,101.325kpa )h2o( g,100,101.325kpa ) h1 h3 h = ?h2o(l,25,101.325kpa)h2o(g,25,101.325kpa )ttnchttpd)(21 m,1j )25100(31.752mvap2hnhttnchttpd)(21 m,3j )10025(6 .332321hhhhqp各種熵變的計算kj6 .
20、87321hhhhsusysutqs11kj81.293kj15.29887600susysisosss11isokj1 .57kj81.29371.236s0不能自動進行不能自動進行suth各種熵變的計算研究化學變化方向要求此值研究化學變化方向要求此值 rmhtrm298k ;hrm298ku rmut已會求任意反應(yīng)的已會求任意反應(yīng)的rm298ks rmst如何求如何求一般條件下發(fā)生的化學反應(yīng),都是不可逆過程。一般條件下發(fā)生的化學反應(yīng),都是不可逆過程?;瘜W反應(yīng)熵變化學反應(yīng)熵變各種熵變的計算1. 熱力學第三定律的經(jīng)典表述及數(shù)學表達式熱力學第三定律的經(jīng)典表述及數(shù)學表達式隨著絕對溫度趨于零,隨著絕
21、對溫度趨于零,凝聚系統(tǒng)定溫反應(yīng)的熵凝聚系統(tǒng)定溫反應(yīng)的熵變趨于零變趨于零l 能斯特熱定理能斯特熱定理(1906):1920年諾貝爾化學獎年諾貝爾化學獎1.12 熱力學第三定律熱力學第三定律( third law of thermodynamics)nernst 1864-1941年(德國)年(德國)1*0kj0)(limtst各種熵變的計算l 普朗克修正說法:普朗克修正說法:純物質(zhì)完美晶體在純物質(zhì)完美晶體在0 k時的熵值為零時的熵值為零1918年諾貝爾物理獎年諾貝爾物理獎planck 18581947年(德國)年(德國) s *( 完美晶體,完美晶體,0 k )0 jk-1各種熵變的計算 如果兩
22、個熱力學系統(tǒng)中的每一個都與第三個如果兩個熱力學系統(tǒng)中的每一個都與第三個熱力學系統(tǒng)處于熱平衡熱力學系統(tǒng)處于熱平衡( (溫度相同溫度相同) ),則它們,則它們彼此也必定處于熱平衡。彼此也必定處于熱平衡。 熱力學第零定律熱力學第零定律各種熵變的計算2. 規(guī)定摩爾熵和標準摩爾熵規(guī)定摩爾熵和標準摩爾熵b(0k,p,完 美 晶 體完 美 晶 體 )b (g,t,p)ss * (0k)s * * (t )在標準態(tài)下的規(guī)定摩爾熵稱為在標準態(tài)下的規(guī)定摩爾熵稱為標準摩爾熵標準摩爾熵)(*)k0(*)(*tsstsb的規(guī)定熵的規(guī)定熵),b,(mtss各種熵變的計算氣體的標準態(tài):氣體的標準態(tài): t、p 下并表現(xiàn)出理想
23、氣體下并表現(xiàn)出理想氣體特性的氣體純物質(zhì)的特性的氣體純物質(zhì)的( (假想假想) )狀態(tài)狀態(tài)液體液體(或固體或固體)的標準態(tài):的標準態(tài):t、p 下純液體下純液體(或純固體)的狀態(tài)或純固體)的狀態(tài)p100kpal 回顧回顧各種熵變的計算3. 純物質(zhì)標準摩爾熵的計算純物質(zhì)標準摩爾熵的計算 b(0k,p,完美晶體完美晶體)b (g,t, p)sb(tf*,p,完美晶體完美晶體)b ( tf*, p, l )b ( tb*, p, l )b(tb*,p, g )s1s2s3s4s5t10k時時德拜公式德拜公式 ,cv, m = at3低溫低溫(t10k)晶體,)晶體,cp , m = at3各種熵變的計算化
24、學反應(yīng)化學反應(yīng) aa(g)bb(s)yy(g)zz(s) rmmma,g,b,s,stastbst mmy,g,z,s,ystzst),(b,)(mbmrtsts1.13 化學反應(yīng)熵變的計算化學反應(yīng)熵變的計算各種熵變的計算練習練習7. co2 (g) + 4h2 (g) = ch4 (g) + 2h2o(g)物質(zhì)物質(zhì) jk-1 mol-1cp,m/j k-1 mol-1 =a+bt/k a 103b co2 213.76 44.14 9.07h2o(g) 188.823 30.12 11.30h2 130.695 29.08 -0.84ch4 186.30 17.45 60.46),k298(mrs)k800(mrs)k298(ms求求各種熵變的計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年建筑施工合同執(zhí)行細則
- 勞務(wù)派遣補充合同范本2024年
- 2024專業(yè)版代理操盤合同
- 2024裝修協(xié)議合同范本
- 2024設(shè)備轉(zhuǎn)讓合同范本設(shè)備購買合同范本2
- 南京銀行學生貸款合同
- 城市軌道工程施工借款合同
- 2024蘇州市全日制勞動合同
- 2024小賣部承包合同
- 2024自費養(yǎng)老合同范文
- 2024年二手物品寄售合同
- 2023年遼陽宏偉區(qū)龍鼎山社區(qū)衛(wèi)生服務(wù)中心招聘工作人員考試真題
- 三年級數(shù)學(上)計算題專項練習附答案集錦
- 高一期中家長會班級基本情況打算和措施模板
- 歷史期中復習課件七年級上冊復習課件(部編版2024)
- 專題7.2 空間點、直線、平面之間的位置關(guān)系(舉一反三)(新高考專用)(學生版) 2025年高考數(shù)學一輪復習專練(新高考專用)
- 7.2.2 先天性行為和學習行為練習 同步練習
- 2024-2025學年八年級物理上冊 4.2光的反射說課稿(新版)新人教版
- 《現(xiàn)代管理原理》章節(jié)測試參考答案
- 2024秋期國家開放大學??啤陡叩葦?shù)學基礎(chǔ)》一平臺在線形考(形考任務(wù)一至四)試題及答案
- TPO26聽力題目及答案
評論
0/150
提交評論