版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
8.7指數(shù)運算及指數(shù)函數(shù)(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一指數(shù)的運算【例1】(2022·全國·高三專題練習(xí))化簡:(1)SKIPIF1<0(2)SKIPIF1<0(a>0,b>0).(3)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】1)原式SKIPIF1<0(2)原式=SKIPIF1<0.(3)原式SKIPIF1<0SKIPIF1<0.【一隅三反】1.(2023·全國·高三專題練習(xí))計算:(1)SKIPIF1<0(2)SKIPIF1<0;(3)SKIPIF1<0(4)求值:SKIPIF1<0【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)625(4)SKIPIF1<0【解析】由對數(shù)和指數(shù)的運算求解即可.(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.(4)SKIPIF1<0SKIPIF1<02.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,求下列各式的值:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【解析】(1)因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0;(2)因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0舍去);(3)解:SKIPIF1<0SKIPIF1<0.3(2023·全國·高三專題練習(xí))(1)計算:SKIPIF1<0;(2)已知SKIPIF1<0是方程SKIPIF1<0的兩根,求SKIPIF1<0的值.【答案】(1)16;(2)SKIPIF1<0.【解析】(1)原式=SKIPIF1<0SKIPIF1<0;(2)由題意SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,考點二指數(shù)函數(shù)的三要素【例2-1】(2022大同期中)函數(shù)SKIPIF1<0是指數(shù)函數(shù),則有()A.a(chǎn)=1或a=3 B.a(chǎn)=1 C.a(chǎn)=3 D.a(chǎn)>0且a≠1【答案】C【解析】由已知得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0。故答案為:C【例2-2】(2022贛州)函數(shù)SKIPIF1<0的值域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由已知SKIPIF1<0SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的值域是SKIPIF1<0.故答案為:B.【一隅三反】1.(2022保山月考)若函數(shù)SKIPIF1<0是指數(shù)函數(shù),則()A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【答案】C【解析】由題意得SKIPIF1<0,解得SKIPIF1<0.故答案為:C2.(2022湖北期末)已知實數(shù)a的取值能使函數(shù)SKIPIF1<0的值域為SKIPIF1<0,實數(shù)b的取值能使函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0()A.4 B.5 C.6 D.7【答案】B【解析】依題意知:SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0的最小值為2,令SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<05.故答案為:B3.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【解析】由題意可知,不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,合乎題意.故答案為:SKIPIF1<0.4.(2022·上海·高三開學(xué)考試)若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】令SKIPIF1<0,由題意得SKIPIF1<0的值域為SKIPIF1<0,又SKIPIF1<0的值域為SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0所以SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0考點三指數(shù)函數(shù)的性質(zhì)【例3-1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù)).若SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為函數(shù)SKIPIF1<0為增函數(shù),若SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),由復(fù)合函數(shù)的單調(diào)性知,必有SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),又SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),所以SKIPIF1<0SKIPIF1<0,故有SKIPIF1<0.故選:B.【例3-2】(2022·陜西·武功縣普集高級中學(xué)高三階段練習(xí)(文))設(shè)函數(shù)SKIPIF1<0則滿足SKIPIF1<0的實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】①當SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,不合題意;②當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.綜上,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.【例3-3】(2022·黑龍江·雙鴨山一中高三開學(xué)考試)已知SKIPIF1<0,則a,b,c大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0.所以SKIPIF1<0.因為SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.故選:A.【一隅三反】1.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】∵SKIPIF1<0是減函數(shù),SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.故選:C.2.(2023·全國·高三專題練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0(SKIPIF1<0)恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0恒成立,即SKIPIF1<0恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:B3.(2022·上海長寧·二模)若函數(shù)SKIPIF1<0存在反函數(shù),則常數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為函數(shù)SKIPIF1<0存在反函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào),若單調(diào)遞增,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0;若單調(diào)遞減,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0;綜上可得SKIPIF1<0;故選:D4.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則k的取值范圍為____________.【答案】SKIPIF1<0【解析】因為函數(shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向下平移一個單位后,再把位于x軸下方的圖象沿x軸翻折到x軸上方得到的,函數(shù)圖象如圖所示:由圖象知,其在SKIPIF1<0上單調(diào)遞減,所以k的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<04.(2023·全國·高三專題練習(xí))已知定義域為R的函數(shù)SKIPIF1<0則關(guān)于t的不等式SKIPIF1<0的解集為________.【答案】SKIPIF1<0.【解析】函數(shù)SKIPIF1<0的定義域為R.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是奇函數(shù).因為SKIPIF1<0為增函數(shù),所以SKIPIF1<0為減函數(shù),所以SKIPIF1<0在R上為減函數(shù).所以SKIPIF1<0可化為SKIPIF1<0.所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0.考點四指數(shù)函數(shù)的綜合運用【例4】(2022南京月考)已知函數(shù)SKIPIF1<0函數(shù)SKIPIF1<0(1)若SKIPIF1<0的定義域為R求實數(shù)m的范圍.(2)若函數(shù)y=|f(x)-3|-k=0在區(qū)間[-2,1]上有且僅有1個解,求實數(shù)k的范圍,(3)是否存在實數(shù)a,b使得函數(shù)SKIPIF1<0的定義域為[a,b]且值域為[2a,2b]?若存在,求出a,b的值;若不存在,請說明理由.【答案】見解析【解析】(1)解:SKIPIF1<0定義域為R,則SKIPIF1<0對任意SKIPIF1<0恒成立,SKIPIF1<0時,SKIPIF1<0不恒成立,SKIPIF1<0時,SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0;綜上,實數(shù)m的取值范圍是SKIPIF1<0.(2)解:SKIPIF1<0即SKIPIF1<0,由方程有解可得SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0僅有一解SKIPIF1<0,滿足題意;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,值域為SKIPIF1<0,則SKIPIF1<0僅有一個屬于SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,兩式僅有一個成立可得SKIPIF1<0;綜上k的范圍是SKIPIF1<0.(3)解:令SKIPIF1<0;SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0遞減,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞增,則值域為SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,即a,b為SKIPIF1<0兩解,由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0遞減,則SKIPIF1<0最大值為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,不滿足SKIPIF1<0;若SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0,不滿足值域為SKIPIF1<0;綜上,存在SKIPIF1<0,SKIPIF1<0滿足題意.【一隅三反】1.(2023·全國·高三專題練習(xí))(多選)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0為偶函數(shù) B.SKIPIF1<0是增函數(shù)C.SKIPIF1<0不是周期函數(shù) D.SKIPIF1<0的最小值為SKIPIF1<0【答案】AD【解析】選項A,由SKIPIF1<0得SKIPIF1<0,函數(shù)定義域是SKIPIF1<0,關(guān)于原點對稱,SKIPIF1<0,所以函數(shù)為偶函數(shù),正確;選項B,定義域是SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是奇函數(shù),易知SKIPIF1<0是R上的增函數(shù),函數(shù)值域為R,SKIPIF1<0,所以存在SKIPIF1<0,值得SKIPIF1<0,從而SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,但SKIPIF1<0,所以SKIPIF1<0不是增函數(shù),B錯;選項C,SKIPIF1<0定義域是R,SKIPIF1<0,因此SKIPIF1<0是函數(shù)的一個周期,C錯;選項D,由上推理知SKIPIF1<0是奇函數(shù),SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,易知函數(shù)為增函數(shù),所以SKIPIF1<0,綜上函數(shù)最小值是1,D正確.故選:AD.2.(2022·全國·高三專題練習(xí))(多選)已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的有(
)A.SKIPIF1<0的圖象關(guān)于坐標原點對稱 B.SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱C.SKIPIF1<0的最大值為1 D.SKIPIF1<0在定義域上單調(diào)遞減【答案】AD【解析】因為SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),圖象關(guān)于坐標原點對稱,故A正確;因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0不是偶函數(shù),圖象不關(guān)于SKIPIF1<0軸對稱,故不B正確;因為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C不正確;因為SKIPIF1<0,且SKIPIF1<0為增函數(shù),所以SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞減,故D正確.故選:AD3.(2022張掖期末)已知函數(shù)SKIPIF1<0(SKIPIF1<0)在區(qū)間SKIPIF1<0上有最大值SKIPIF1<0和最小值SKIPIF1<0.設(shè)SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)若不等式SKIPIF1<0在SKIPIF1<0上有解,求實數(shù)SKIPIF1<0的取值范圍.【答案】見解析【解析】(1)解:∵SKIPIF1<0,∴SKIPIF1<0為開口向上的拋物線,對稱軸為:SKIPIF1<0,在SKIPIF1<0上是減函數(shù),∴SKIPIF1<0,解得SKIPIF1<0(2)解:SKIPIF1<0.由于SKIPIF1<0則有SKIPIF1<0整理得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0令SKIPIF1<0,SKIPIF1<0則SKIPIF1<0∵SKIPIF1<0有解,∴SKIPIF1<0.故符合條件的實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<08.7指數(shù)運算及指數(shù)函數(shù)(精練)(基礎(chǔ)版)題組一題組一指數(shù)的運算1.(2022·全國·高三專題練習(xí))(1)計算SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)-5;(2)14.【解析】(1)SKIPIF1<00.3﹣1﹣36+33+1SKIPIF1<036+27+1SKIPIF1<05.(2)若SKIPIF1<0,∴xSKIPIF1<02=6,xSKIPIF1<04,∴x2+x﹣2+2=16,∴x2+x﹣2=14.2.(2022·全國·高三專題練習(xí))化簡下列各式:(1)SKIPIF1<0-SKIPIF1<0-π0;(2)SKIPIF1<0【答案】(1)0;(2)SKIPIF1<0.【解析】(1)原式=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0.3.(2022·全國·高三專題練習(xí))化簡下列各式(其中各字母均為正數(shù)).(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【解析】(1)原式SKIPIF1<0SKIPIF1<0;(2)原式SKIPIF1<0;(3)原式SKIPIF1<0SKIPIF1<0;(4)原式SKIPIF1<0SKIPIF1<0.4(2022·全國·高三專題練習(xí))(1)計算:SKIPIF1<0;(2)化簡:SKIPIF1<0.【答案】(1)3;(2)SKIPIF1<0.【解析】(1)原式SKIPIF1<0;(2)原式SKIPIF1<0.5.(2022·全國·高三專題練習(xí))分別計算下列數(shù)值:(1)SKIPIF1<0;(2)已知SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)-12.【解析】(1)原式SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(2)∵SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0.題組二題組二指數(shù)函數(shù)的三要素1.(2022張家口)函數(shù)SKIPIF1<0的值域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0故答案為:C.2.(2022湖南)若不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】不等式SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0恒成立,即SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:B.3.(2022嫩江月考)(多選)函數(shù)y=(a2-4a+4)ax是指數(shù)函數(shù),則a的值不可以是()A.4 B.3 C.2 D.1【答案】ACD【解析】由指數(shù)函數(shù)的定義得a2-4a+4=1且a≠1,解得a=3.故答案為:ACD.
4.(2022長春月考)已知函數(shù)f(x)=x2?2,x<?12x?1,x≥?1,則函數(shù)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】當x<-1時,f(x)=x2-2>-1,當x≥-1時,SKIPIF1<0,綜上可得函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:B【分析】根據(jù)分段函數(shù),結(jié)合二次函數(shù)與指數(shù)函數(shù)的值域求解即可.5.(2021·全國乙卷)下列函數(shù)中最小值為4的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】對于A:因為y=(x+1)2+3,則ymin=3;故A不符合題意;
對于B:因為SKIPIF1<0,設(shè)t=|sinx|(SKIPIF1<0),則y=g(t)=SKIPIF1<0由雙溝函數(shù)知,
函數(shù)y=g(t)=SKIPIF1<0是減函數(shù),所以ymin=g(1)=5,所以B選項不符合;
對于C:因為SKIPIF1<0SKIPIF1<0當且僅當SKIPIF1<0時“=”成立,
即ymin=4,故C選項正確;
對于D:當SKIPIF1<0時,SKIPIF1<0<0,故D選項不符合,
故答案為:C.
6.(2022·北京市第二十二中學(xué)高三開學(xué)考試)下列函數(shù)中,定義域與值域均為R的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】A.函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為R;B.函數(shù)SKIPIF1<0的定義域為R,值域為SKIPIF1<0;C.函數(shù)SKIPIF1<0的定義域為R,值域為R;D.函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,故選:C7.(2022·江蘇·礦大附中高三階段練習(xí))(多選)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,下列結(jié)論中一定成立的結(jié)論的序號是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0當函數(shù)的最小值為1時,僅有SKIPIF1<0滿足,所以SKIPIF1<0,故D正確;當函數(shù)的最大值為2時,僅有SKIPIF1<0滿足,所以SKIPIF1<0,故C正確;即當SKIPIF1<0時,函數(shù)的值域為SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0不一定正確,故A正確,B錯誤;故選:ACD6.(2022奉賢期中)指數(shù)函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0,則該指數(shù)函數(shù)的表達式為.【答案】SKIPIF1<0【解析】指數(shù)函數(shù)SKIPIF1<0且SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以該指數(shù)函數(shù)的表達式為SKIPIF1<0.故答案為:SKIPIF1<0.7.(2022定遠月考)已知SKIPIF1<0,且SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為10,則SKIPIF1<0.【答案】SKIPIF1<0或SKIPIF1<0【解析】(1)若SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是遞增的,當SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.(2)若SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是遞減的,當SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0.綜上所述,SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0題組三題組三指數(shù)函數(shù)的性質(zhì)1.(2022·重慶南開中學(xué)高三階段練習(xí))若命題“SKIPIF1<0”為真命題,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0,所以SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D2.(2022·黑龍江·牡丹江市第三高級中學(xué)高三階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.而SKIPIF1<0所以在SKIPIF1<0上有SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.所以SKIPIF1<0,即SKIPIF1<0故SKIPIF1<0.故SKIPIF1<0.故選:D3.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則a、b、c的大小關(guān)系為()A.a(chǎn)<b<c B.c<a<b C.b<a<c D.c<b<a【答案】C【解析】函數(shù)SKIPIF1<0是定義域R上的單調(diào)減函數(shù),且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,于是得SKIPIF1<0,即SKIPIF1<0,所以a、b、c的大小關(guān)系為SKIPIF1<0.故選:C4.(2023·全國·高三專題練習(xí))三個數(shù)a=0.42,b=log20.3,c=20.6之間的大小關(guān)系是(
)A.a(chǎn)<c<b B.a(chǎn)<b<c C.b<a<c D.b<c<a【答案】C【解析】∵0<0.42<0.40=1,∴0<a<1,∵log20.3<log21=0,∴b<0,∵20.6>20=1,∴c>1,∴b<a<c,故選:C.5.(2022·山東·棗莊市第三中學(xué)高三開學(xué)考試)已知函數(shù)SKIPIF1<0,若存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【解析】因為存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,所以SKIPIF1<0SKIPIF1<0有解,化簡SKIPIF1<0SKIPIF1<0有解,即SKIPIF1<0SKIPIF1<0有解.因為SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<06.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有解,則實數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【解析】由題意得:SKIPIF1<0有解令SKIPIF1<0SKIPIF1<0有解,即SKIPIF1<0有解,顯然SKIPIF1<0無意義SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等,SKIPIF1<0故答案為:SKIPIF1<0.7.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0,則實數(shù)a的取值范圍是___________.【答案】SKIPIF1<0【解析】當SKIPIF1<0時,SKIPIF1<0,∴當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0為增函數(shù),所以SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,∵對SKIPIF1<0,使得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.8.(2022遂寧期末)已知方程SKIPIF1<0有兩個不相等實根,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,方程SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0有兩個不相等實根,所以方程SKIPIF1<0在SKIPIF1<0由兩個不相等的實數(shù)根,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0時有兩個零點,所以2k+32>1Δ=[?(2k+3)]2?4×4>0f(1)=1?(2k+3)+4>0故答案為:SKIPIF1<09(2022河北).設(shè)函數(shù)f(x)=x(ex+ae﹣x),x∈R,是偶函數(shù),則實數(shù)a=.【答案】-1【解析】∵函數(shù)f(x)=x(ex+ae﹣x),x∈R是偶函數(shù),∴f(﹣x)=f(x),即(﹣x)?(e﹣x+aex)=x(ex+ae﹣x),整理,得(a+1)?x?(1+e2x)=0.∵x∈R,1+e2x>0,∴a+1=0,故a=﹣1.故答案為﹣1.10.(2022云南)要使函數(shù)y=1+2x+a?4x在(x∈(﹣∞,1])有y>0恒成立,則實數(shù)a的取值范圍是.【答案】(SKIPIF1<0.,+∞)【解析】設(shè)t=2x,因為x∈(﹣∞,1],所以0<t≤2.則原函數(shù)等價為y=1+t+at2,要使y>0恒成立,即y=1+t+at2>0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,因為0<t≤2,所以SKIPIF1<0,所以SKIPIF1<0,所以a>SKIPIF1<0.故答案為:(SKIPIF1<0.,+∞).題組四題組四指數(shù)函數(shù)的綜合運用1.(2022泗縣開學(xué)考)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.(1)求SKIPIF1<0;(2)當SKIPIF1<0時,求SKIPIF1<0的最小值.【答案】見解析【解析】(1)解:∵由題可得SKIPIF1<0可解得SKIPIF1<0.(2)∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.①若SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,②若SKIPIF1<0,即SKIPIF1<0時,所以當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0.∴f(x)2(2022石家莊期末)設(shè)指數(shù)函數(shù)SKIPIF1<0,冪函數(shù)SKIPIF1<0.(1)求SKIPIF1<0;(2)設(shè)SKIPIF1<0,如果存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】見解析【解析】(1)解:根據(jù)題意得:m+2≠1m+2>0m2+m+1=1,解得SKIPIF1<0.(2)解:由(1)知SKIPIF1<0,SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,等價于當SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<03.(2022浙江期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0是增函數(shù),求實數(shù)SKIPIF1<0的取值范圍;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】見解析【解析】(1)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,由條件可知SKIPIF1<0在SKIPIF1<0是增函數(shù).當S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 祛斑合同范例
- 收購公司中介合同范例
- 洋房裝修合同范例
- 借款抵押黃金合同范例
- 家政員培訓(xùn)合同范例
- 文化類公司合同范例
- 展會延期合同范例
- 國內(nèi)糧食采購合同范例
- 盲人按摩收徒合同范例
- 合作司機合同范例
- 四川省普教科研資助金課題檢測報告
- 古傳五禽戲內(nèi)功法詳解(圖)
- 粵西茂名許氏源流考
- 關(guān)于房屋裝飾裝修價值評估的探討
- 土力學(xué)基本知識完整版
- 六十仙命配二十四山吉兇選擇一覽表
- 瓷磚膠項目項目建議書寫作范本
- 小型辦公系統(tǒng)(數(shù)據(jù)庫課程設(shè)計)word格式
- 模擬通信系統(tǒng)(PM調(diào)制)Matlab仿真平臺的設(shè)計與實現(xiàn)
- 宋史·文天祥傳 閱讀附答案
- 船體結(jié)構(gòu)CM節(jié)點
評論
0/150
提交評論