![高等數(shù)學(xué)導(dǎo)數(shù)公式大全_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/12/a66f7d83-b792-4a50-aad6-46bc98862919/a66f7d83-b792-4a50-aad6-46bc988629191.gif)
![高等數(shù)學(xué)導(dǎo)數(shù)公式大全_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/12/a66f7d83-b792-4a50-aad6-46bc98862919/a66f7d83-b792-4a50-aad6-46bc988629192.gif)
![高等數(shù)學(xué)導(dǎo)數(shù)公式大全_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/12/a66f7d83-b792-4a50-aad6-46bc98862919/a66f7d83-b792-4a50-aad6-46bc988629193.gif)
![高等數(shù)學(xué)導(dǎo)數(shù)公式大全_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/12/a66f7d83-b792-4a50-aad6-46bc98862919/a66f7d83-b792-4a50-aad6-46bc988629194.gif)
![高等數(shù)學(xué)導(dǎo)數(shù)公式大全_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/12/a66f7d83-b792-4a50-aad6-46bc98862919/a66f7d83-b792-4a50-aad6-46bc988629195.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、導(dǎo)數(shù)的基本公式與運(yùn)算法則導(dǎo)數(shù)的基本公式與運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)的導(dǎo)數(shù)公式(x ) = x - -1 .(ax) = ax lna .(ex) = ex.0 (cc為任意常數(shù)).ln1)(logaxxa .1)(lnxx (sin x) = cos x.(cos x) = - - sin x.(tan x) = = sec2x .(cot x) = = - - csc2x .(sec x) = = sec x tan x .(csc x) = = - - csc x cot x .,11)(arcsin2xx- - 另外還有反三角函數(shù)的導(dǎo)數(shù)公式:另外還有反三角函數(shù)的導(dǎo)數(shù)公式:
2、,11)(arccos2xx- - - ,11)(arctan2xx .11)cotarc(2xx - - 定理定理2.2. 1設(shè)函數(shù)設(shè)函數(shù) u(x)、v( (x) ) 在在 x 處可導(dǎo)處可導(dǎo),)0)()()( xuxuxv在在 x 處也可導(dǎo),處也可導(dǎo),(u(x) v(x) = u (x) v (x);(u(x)v(x) = u(x)v (x) + + u (x)v(x);.)()()()()()()(2xuxvxuxvxuxuxv - - 導(dǎo)數(shù)的四則運(yùn)算導(dǎo)數(shù)的四則運(yùn)算且且則它們的和則它們的和、差差、積與商積與商推論推論 1(cu(x) = cu (x) (c 為常數(shù)為常數(shù)).推論推論 2.)
3、()()(12xuxuxu - - ()uvwu vwuv wuvw乘法法則的推廣:乘法法則的推廣:補(bǔ)充例題:補(bǔ)充例題: 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):解解根據(jù)推論根據(jù)推論 1 可得可得 (3x4) = 3(x4) ,(5cos x) = 5(cos x) ,(cos x) = - - sin x,(ex) = ex, (1) = 0,故故f (x) = (3x4 - - ex + 5cos x - - 1) = (3x4) - -( (ex ) ) + (5cos x) - - (1) = 12x3 - - ex - - 5sin x .f (0) = (12x3 - - ex - -
4、 5sin x)|x=0 = - - 1又又(x4) = 4x3,例例 1設(shè)設(shè) f (x) = 3x4 ex + 5cos x - - 1,求求 f (x) 及及 f (0).例例 2設(shè)設(shè) y = xlnx , 求求 y .解解根據(jù)乘法公式,有根據(jù)乘法公式,有y = (xlnx) = x (lnx) (x) lnxxxxln11 .ln1x 解解根據(jù)除法公式,有根據(jù)除法公式,有22222)1()1()1()1)(1(11 - - - - - - - - xxxxxxxy例例 3設(shè)設(shè),112 - - xxy求求 y .2222)1()1()1()()1()(1( - - - - - - xxxx
5、x.)1(12)1()1(2)1(222222 - - - - - xxxxxxx教材教材P32 P32 例例2 2 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):3(1)cosyxx-2(2)xyx e2(3)1xyx-32(4)23 sinyxxxe解:解:332(1)(cos )() (cos )3sinyxxxxxx-2222(2)()()()2(2)xxxxxxyx exex exex exxe22222(1)(1)(3)()1(1)xxxxxyxx-2221( 2 )(1)xxxx-222)1 (1xx- 32(4)(2) (3 sin ) ()yxxxe0)sin( 3)(23-xxx)c
6、os(sin362xxxx- 高階導(dǎo)數(shù)高階導(dǎo)數(shù)如果可以對函數(shù)如果可以對函數(shù) f(x) 的導(dǎo)函數(shù)的導(dǎo)函數(shù) f (x) 再求導(dǎo),再求導(dǎo),所得到的一個新函數(shù),所得到的一個新函數(shù), 稱為函數(shù)稱為函數(shù) y = f(x) 的二階導(dǎo)數(shù),的二階導(dǎo)數(shù),.dd22xy記作記作 f (x) 或或 y 或或如對二階導(dǎo)數(shù)再求導(dǎo),則如對二階導(dǎo)數(shù)再求導(dǎo),則稱三階導(dǎo)數(shù),稱三階導(dǎo)數(shù),.dd33xy記作記作 f (x) 或或 四階或四階以上導(dǎo)四階或四階以上導(dǎo)數(shù)記為數(shù)記為 y(4),y(5), ,y(n),dd44xy,ddnnxy或或 , 而把而把 f (x) 稱為稱為 f (x) 的一階導(dǎo)數(shù)的一階導(dǎo)數(shù).例例3 3 求下列函數(shù)的
7、二階導(dǎo)數(shù)求下列函數(shù)的二階導(dǎo)數(shù)(1)cosyxx(2)arctanyx(1)cos( sin )cossinyxxxxxx-xxxxxxxycossin2)cos(sinsin-21(2)1yx222)1 ()1 (xxy-22)1 (2xx-解:解:二階以上的導(dǎo)數(shù)可利用后面的數(shù)學(xué)軟件二階以上的導(dǎo)數(shù)可利用后面的數(shù)學(xué)軟件來計算來計算 2.2.4 復(fù)合函數(shù)的求導(dǎo)法則2.2 ( )( )( ( )( ) ( ) dydy dudxdu dxdyfuu xduu xxyf uuyf u xxx定理若函數(shù)在點 可導(dǎo),函數(shù) 在點 處可導(dǎo),則復(fù)合函數(shù)在點 可導(dǎo),且或記作:推論推論設(shè)設(shè) y = f (u) ,
8、u = (v), v = (x) 均均可導(dǎo)可導(dǎo),則復(fù)合函數(shù)則復(fù)合函數(shù) y = f ( (x) 也可導(dǎo)也可導(dǎo),.xvuxvuyy 以上法則說明:復(fù)合函數(shù)對自變量的導(dǎo)數(shù)等于復(fù)合以上法則說明:復(fù)合函數(shù)對自變量的導(dǎo)數(shù)等于復(fù)合函數(shù)對中間變量的導(dǎo)數(shù)乘以中間變量對自變量的導(dǎo)數(shù)函數(shù)對中間變量的導(dǎo)數(shù)乘以中間變量對自變量的導(dǎo)數(shù). .23tan4.1(31) ; 2)sin(2); 3)lncos ;4);5)2xxyxyxyxyey-例 求下列函數(shù)的導(dǎo)數(shù):)32322222222(1)( ), ( )31,( )3( )( )3(31)(31)3(31)618 (31)yux u xxyuxuxu xxxxxxx
9、解: 函數(shù)可以分解為 先將要求導(dǎo)的函數(shù)分解成基本初等函數(shù)先將要求導(dǎo)的函數(shù)分解成基本初等函數(shù),或或常數(shù)與基本初等函數(shù)的和、差、積、商常數(shù)與基本初等函數(shù)的和、差、積、商. 任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本初等函數(shù)的求導(dǎo)公式和上述復(fù)合函數(shù)的求導(dǎo)初等函數(shù)的求導(dǎo)公式和上述復(fù)合函數(shù)的求導(dǎo)法則求出法則求出. 復(fù)合函數(shù)求導(dǎo)的關(guān)鍵復(fù)合函數(shù)求導(dǎo)的關(guān)鍵: 正確分解初等函數(shù)正確分解初等函數(shù)的復(fù)合結(jié)構(gòu)的復(fù)合結(jié)構(gòu).求導(dǎo)方法小結(jié):求導(dǎo)方法小結(jié):例例5 5:求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù)(1) (2)(3) (4)2cosxy 232-xxeyxylnlnln)1ln(2xxy 二
10、元函數(shù)的偏導(dǎo)數(shù)的求法二元函數(shù)的偏導(dǎo)數(shù)的求法求 對自變量 (或 )的偏導(dǎo)數(shù)時,只須將另一自變量 (或 )看作常數(shù),直接利用一元函數(shù)求導(dǎo)公式和四則運(yùn)算法則進(jìn)行計算.),(yxfz xyyx例例1 1 設(shè)函數(shù)設(shè)函數(shù)324( , )23,f x yxx yy-求求( , ),xfx y( , ),yfx y(1,1),xf(1, 1),yf-解:解: xyxyyxxyxfxx43)32(),(2423-32423122)32(),(yxyyxxyxfyy-111413) 1 , 1 (2-xf14) 1(1212) 1, 1 (32-yf例例2 2 設(shè)函數(shù)設(shè)函數(shù) 求),ln()(2222yxyxzxz
11、yz解:解:xxyxyxyxyxxz )ln()ln()(222222222222222212 ln()()()xxxyxyxyxy222 ln()2xxyx222 ln() 1xxy類似可得類似可得2222222)()ln(2yxyyxyxyyz222 ln()1yxy 二元函數(shù)的二階偏導(dǎo)數(shù)二元函數(shù)的二階偏導(dǎo)數(shù)函數(shù)函數(shù) z = f ( x , y ) 的兩個偏導(dǎo)數(shù)的兩個偏導(dǎo)數(shù)),(yxfxzx ),(yxfyzy 一般說來仍然是一般說來仍然是 x , y 的函數(shù),的函數(shù), 如果這兩個函數(shù)關(guān)于如果這兩個函數(shù)關(guān)于 x , y 的偏導(dǎo)數(shù)也存在,的偏導(dǎo)數(shù)也存在, 則稱它們的偏導(dǎo)數(shù)是則稱它們的偏導(dǎo)數(shù)是
12、 f (x , y)的二階偏導(dǎo)數(shù)的二階偏導(dǎo)數(shù).依照對變量的不同求導(dǎo)次序,依照對變量的不同求導(dǎo)次序,二階偏導(dǎo)數(shù)有四二階偏導(dǎo)數(shù)有四個:(用符號表示如下)個:(用符號表示如下)其中其中 及及 稱為二階混合偏導(dǎo)數(shù)稱為二階混合偏導(dǎo)數(shù).),(yxfxy ),(yxfyx 類似的,可以定義三階、四階、類似的,可以定義三階、四階、 、n 階偏導(dǎo)數(shù),階偏導(dǎo)數(shù),二階及二階以上的偏導(dǎo)數(shù)稱為高階偏導(dǎo)數(shù),二階及二階以上的偏導(dǎo)數(shù)稱為高階偏導(dǎo)數(shù),),(,),(yxfyyxfx而稱為函數(shù)稱為函數(shù) f ( x , y ) 的一階偏導(dǎo)數(shù)的一階偏導(dǎo)數(shù).注:當(dāng)兩個二階導(dǎo)數(shù)連續(xù)時,它們是相等的注:當(dāng)兩個二階導(dǎo)數(shù)連續(xù)時,它們是相等的 即即 ),(yxfxy ( , )yxfx y例例 3arctan,xy設(shè) z試求函數(shù)的四個二階偏導(dǎo)函數(shù)試求函數(shù)的四個二階偏導(dǎo)函數(shù)yxz 2xyz 222zy22zx思考題一思考題一 求曲線求曲線 上與上與 軸平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 26189.2-2024工作場所照明第2部分:室外作業(yè)場所的安全保障照明要求
- Mevalonolactone-生命科學(xué)試劑-MCE-8562
- 二零二五年度版股東借款合同爭議調(diào)解與賠償協(xié)議書
- 二零二五年度電商平臺跨境電商稅收籌劃合作協(xié)議
- 二零二五年度特色小吃店整體轉(zhuǎn)讓合同
- 2025年度航空航天維修與服務(wù)版勞動合同
- 施工組織設(shè)計對土木工程項目的重要性探討
- 施工日志填寫樣本施工質(zhì)量檢查與驗收記錄
- 科技前沿電子產(chǎn)品的設(shè)計與制造新趨勢
- 營銷策略與學(xué)校品牌形象塑造探討
- 高考百日誓師動員大會
- 賈玲何歡《真假老師》小品臺詞
- 2024年北京東城社區(qū)工作者招聘筆試真題
- 《敏捷項目管理》課件
- 統(tǒng)編版(2024新版)七年級上學(xué)期道德與法治期末綜合測試卷(含答案)
- 黑龍江省哈爾濱市2024屆中考數(shù)學(xué)試卷(含答案)
- 前程無憂測評題庫及答案
- 高三日語一輪復(fù)習(xí)助詞「と」的用法課件
- 物業(yè)管理服務(wù)房屋及公用設(shè)施維修養(yǎng)護(hù)方案
- 醫(yī)療器械法規(guī)培訓(xùn)
- 無子女離婚協(xié)議書范文百度網(wǎng)盤
評論
0/150
提交評論