排列組合問(wèn)題_第1頁(yè)
排列組合問(wèn)題_第2頁(yè)
排列組合問(wèn)題_第3頁(yè)
排列組合問(wèn)題_第4頁(yè)
排列組合問(wèn)題_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、例例1.由由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字 五位奇數(shù)五位奇數(shù). 解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,應(yīng)該優(yōu)先安應(yīng)該優(yōu)先安 排排,以免不合要求的元素占了這兩個(gè)位置以免不合要求的元素占了這兩個(gè)位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_13C13C14C14C34A34A由分步計(jì)數(shù)原理得由分步計(jì)數(shù)原理得=28813C14C34A1.1.7 7種不同的花種在排成一列的花盆里種不同的花種在排成一列的花盆里, ,若兩若兩種葵花不種在中間,也不種在兩端的花盆種葵花不種在中間,也不種在兩端

2、的花盆里里,問(wèn)有多少不同的種法?問(wèn)有多少不同的種法?25451440A A練習(xí)題例例2. 72. 7人站成一排人站成一排 , ,其中甲乙相鄰且丙丁相其中甲乙相鄰且丙丁相 鄰鄰, , 共有多少種不同的排法共有多少種不同的排法. .甲甲乙乙丙丙丁丁由分步計(jì)數(shù)原理可得共有由分步計(jì)數(shù)原理可得共有種不同的排法種不同的排法55A22A22A=480解:可先將甲乙兩元素捆綁成整體并看成解:可先將甲乙兩元素捆綁成整體并看成 一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè) 復(fù)合元素,再與其它元素進(jìn)行排列,復(fù)合元素,再與其它元素進(jìn)行排列, 同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。

3、 某人射擊某人射擊8 8槍?zhuān)袠專(zhuān)? 4槍?zhuān)瑯專(zhuān)? 4槍命中恰好槍命中恰好有有3 3槍連在一起的情形的不同種數(shù)為槍連在一起的情形的不同種數(shù)為( )練習(xí)題20. .55A第二步將第二步將4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6個(gè)元素中間包含首尾兩個(gè)空位共有個(gè)元素中間包含首尾兩個(gè)空位共有種種 不同的方法不同的方法 46A由分步計(jì)數(shù)原理,節(jié)目的不同順序共有 種55A46A相相相相獨(dú)獨(dú)獨(dú)獨(dú)獨(dú)獨(dú)某班新年聯(lián)歡會(huì)原定的某班新年聯(lián)歡會(huì)原定的5 5個(gè)節(jié)目已排成節(jié)個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目目單,開(kāi)演前又增加了兩個(gè)新節(jié)目. .如果如果將這兩個(gè)新節(jié)目插入原節(jié)目單中,且兩將這兩個(gè)新節(jié)

4、目插入原節(jié)目單中,且兩個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)為(為( )30練習(xí)題四四. .定序問(wèn)題倍縮空位插入策略定序問(wèn)題倍縮空位插入策略例例4.74.7人排隊(duì)人排隊(duì), ,其中甲乙丙其中甲乙丙3 3人順序一定共有多人順序一定共有多 少不同的排法少不同的排法解:( (倍縮法倍縮法) )對(duì)于某幾個(gè)元素順序一定的排列對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題問(wèn)題, ,可先把這幾個(gè)元素與其他元素一起可先把這幾個(gè)元素與其他元素一起進(jìn)行排列進(jìn)行排列, ,然后用總排列數(shù)除以然后用總排列數(shù)除以這幾個(gè)元這幾個(gè)元素之間的全排列數(shù)素之間的全排列數(shù), ,則共有不同排法種數(shù)則共有不同排法種數(shù)是:是

5、: 7733AA(空位法空位法)設(shè)想有)設(shè)想有7 7把椅子讓除甲乙丙以外把椅子讓除甲乙丙以外的四人就坐共有的四人就坐共有 種方法,其余的三個(gè)種方法,其余的三個(gè)位置甲乙丙共有位置甲乙丙共有 種坐法,則共有種坐法,則共有 種種 方法方法 47A147A思考思考: :可以先讓甲乙丙就坐嗎可以先讓甲乙丙就坐嗎? ?(插入法插入法) )先排甲乙丙三個(gè)人先排甲乙丙三個(gè)人, ,共有共有1 1種排法種排法, ,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4 4* *5 5* *6 6* *7 7定序問(wèn)題可以用倍縮法,還可轉(zhuǎn)化為占位插定序問(wèn)題可以用倍縮法,還可轉(zhuǎn)化為占位插空模型處理空模型處

6、理練習(xí)題1010人身高各不相等人身高各不相等, ,排成前后排,每排排成前后排,每排5 5人人, ,要要求從左至右身高逐漸增加,共有多少排法?求從左至右身高逐漸增加,共有多少排法?510C五五. .重排問(wèn)題求冪策略重排問(wèn)題求冪策略例例5.5.把把6 6名實(shí)習(xí)生分配到名實(shí)習(xí)生分配到7 7個(gè)車(chē)間實(shí)習(xí)個(gè)車(chē)間實(shí)習(xí), ,共有共有 多少種不同的分法多少種不同的分法解解: :完成此事共分六步完成此事共分六步: :把第一名實(shí)習(xí)生分配把第一名實(shí)習(xí)生分配 到車(chē)間有到車(chē)間有 種分法種分法. .7 7把第二名實(shí)習(xí)生分把第二名實(shí)習(xí)生分配配 到車(chē)間也有到車(chē)間也有7 7種分法,種分法, 依此類(lèi)推依此類(lèi)推, ,由分步由分步計(jì)計(jì)

7、數(shù)原理共有數(shù)原理共有 種不同的排法種不同的排法67允許重復(fù)的排列問(wèn)題的特點(diǎn)是以元素為研究允許重復(fù)的排列問(wèn)題的特點(diǎn)是以元素為研究對(duì)象,元素不受位置的約束,可以逐一安排對(duì)象,元素不受位置的約束,可以逐一安排各個(gè)元素的位置,一般地各個(gè)元素的位置,一般地n不同的元素沒(méi)有限不同的元素沒(méi)有限制地安排在制地安排在m個(gè)位置上的排列數(shù)為個(gè)位置上的排列數(shù)為 種種n nm m1. 某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( ) 422. 2. 某某8 8層大樓一樓電梯上來(lái)層大樓一樓電梯上來(lái)8 8名乘客人名乘客人, ,他們他們 到各自的一

8、層下電梯到各自的一層下電梯, ,下電梯的方法下電梯的方法( )87練習(xí)題六六. .環(huán)排問(wèn)題線排策略環(huán)排問(wèn)題線排策略例例6. 56. 5人圍桌而坐人圍桌而坐, ,共有多少種坐法共有多少種坐法? ? 解:解:圍桌而坐與圍桌而坐與坐成一排的不同點(diǎn)在于,坐成坐成一排的不同點(diǎn)在于,坐成 圓形沒(méi)有首尾之分,所以固定一人圓形沒(méi)有首尾之分,所以固定一人A A并從并從 此位置把圓形展成直線其余此位置把圓形展成直線其余4 4人共有人共有_ 種排法即種排法即 44AA AB BC CE ED DD DA AA AB BC CE E(5-1)5-1)!練習(xí)題6顆顏色不同的鉆石,可穿成幾種鉆石圈601mnmA例例7.8

9、7.8人排成前后兩排人排成前后兩排, ,每排每排4 4人人, ,其中甲乙在其中甲乙在 前排前排, ,丁在后排丁在后排, ,共有多少排法共有多少排法解解:8人排前后兩排人排前后兩排,相當(dāng)于相當(dāng)于8人坐人坐8把椅子把椅子,可以可以 把椅子排成一排把椅子排成一排. 先在前先在前4個(gè)位置排甲乙兩個(gè)位置排甲乙兩個(gè)特殊元素有個(gè)特殊元素有_種種,再排后再排后4個(gè)位置上的個(gè)位置上的特殊元素有特殊元素有_種種,其余的其余的5人在人在5個(gè)位置個(gè)位置上任意排列有上任意排列有_種種,則共有則共有_種種.前排后排后排24A14A55A24A55A14A一般地一般地,元素分成多排的排列問(wèn)題元素分成多排的排列問(wèn)題,可歸結(jié)為

10、一排考慮可歸結(jié)為一排考慮,再分段研究再分段研究.有兩排座位,前排有兩排座位,前排1111個(gè)座位,后排個(gè)座位,后排1212個(gè)座位,現(xiàn)安排個(gè)座位,現(xiàn)安排2 2人就座規(guī)定前排人就座規(guī)定前排中間的中間的3 3個(gè)座位不能坐,并且這個(gè)座位不能坐,并且這2 2人人不左右相鄰,那么不同排法的種數(shù)不左右相鄰,那么不同排法的種數(shù)是是_346練習(xí)題例例8.8.有有5 5個(gè)不同的小球個(gè)不同的小球, ,裝入裝入4 4個(gè)不同的盒內(nèi)個(gè)不同的盒內(nèi), , 每盒至少裝一個(gè)球每盒至少裝一個(gè)球, ,共有多少不同的裝共有多少不同的裝 法法. .解解: :第一步從第一步從5 5個(gè)球中選出個(gè)球中選出2 2個(gè)組成復(fù)合元共個(gè)組成復(fù)合元共 有有

11、_種方法種方法. .再把再把5 5個(gè)元素個(gè)元素( (包含一個(gè)復(fù)合包含一個(gè)復(fù)合 元素元素) )裝入裝入4 4個(gè)不同的盒內(nèi)有個(gè)不同的盒內(nèi)有_種方法種方法. .25C44A根據(jù)分步計(jì)數(shù)原理裝球的方法共有根據(jù)分步計(jì)數(shù)原理裝球的方法共有_25C44A練習(xí)題一個(gè)班有一個(gè)班有6 6名戰(zhàn)士名戰(zhàn)士, ,其中正副班長(zhǎng)各其中正副班長(zhǎng)各1 1人人現(xiàn)從中選現(xiàn)從中選4 4人完成四種不同的任務(wù)人完成四種不同的任務(wù), ,每人每人完成一種任務(wù)完成一種任務(wù), ,且正副班長(zhǎng)有且只有且正副班長(zhǎng)有且只有1 1人人參加參加, ,則不同的選法有則不同的選法有_ _ 種種192192例例9.9.用用1,2,3,4,51,2,3,4,5組成沒(méi)

12、有重復(fù)數(shù)字的五位數(shù)組成沒(méi)有重復(fù)數(shù)字的五位數(shù) 其中恰有兩個(gè)偶數(shù)夾其中恰有兩個(gè)偶數(shù)夾1,1,在兩個(gè)奇數(shù)之在兩個(gè)奇數(shù)之 間間, ,這樣的五位數(shù)有多少個(gè)?這樣的五位數(shù)有多少個(gè)?解:把解:把,當(dāng)作一個(gè)小集團(tuán)與排隊(duì)當(dāng)作一個(gè)小集團(tuán)與排隊(duì)共有共有_種排法,再排小集團(tuán)內(nèi)部共有種排法,再排小集團(tuán)內(nèi)部共有_種排法,由分步計(jì)數(shù)原理共有種排法,由分步計(jì)數(shù)原理共有_種排法種排法.22A2222A A2222A A22A31524小集團(tuán)小集團(tuán).計(jì)劃展出計(jì)劃展出10幅不同的畫(huà)幅不同的畫(huà),其中其中1幅水彩畫(huà)幅水彩畫(huà),幅油畫(huà)幅油畫(huà),幅國(guó)畫(huà)幅國(guó)畫(huà), 排成一行陳列排成一行陳列,要求同一要求同一品種的必須連在一起,并且水彩畫(huà)不在兩品種

13、的必須連在一起,并且水彩畫(huà)不在兩端,那么共有陳列方式的種數(shù)為端,那么共有陳列方式的種數(shù)為_(kāi)2. 5男生和女生站成一排照像男生和女生站成一排照像,男生相鄰男生相鄰,女女生也相鄰的排法有生也相鄰的排法有_種種255255A A A254254A A A小集團(tuán)排列問(wèn)題中,先整體后局小集團(tuán)排列問(wèn)題中,先整體后局部,再結(jié)合其它策略進(jìn)行處理。部,再結(jié)合其它策略進(jìn)行處理。十.元素相同問(wèn)題隔板策略例例10.有有1010個(gè)運(yùn)動(dòng)員名額,在分給個(gè)運(yùn)動(dòng)員名額,在分給7 7個(gè)班,每個(gè)班,每班至少一個(gè)班至少一個(gè), ,有多少種分配方案?有多少種分配方案? 解:因?yàn)榻猓阂驗(yàn)?0個(gè)名額沒(méi)有差別,把它們排成個(gè)名額沒(méi)有差別,把它們

14、排成一排。相鄰名額之間形成個(gè)空隙。一排。相鄰名額之間形成個(gè)空隙。在個(gè)空檔中選個(gè)位置插個(gè)隔板,在個(gè)空檔中選個(gè)位置插個(gè)隔板,可把名額分成份,對(duì)應(yīng)地分給個(gè)可把名額分成份,對(duì)應(yīng)地分給個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有共有_種分法。種分法。一班二班三班四班五班六班七班69C練習(xí)題1.1.1010個(gè)相同的球裝個(gè)相同的球裝5 5個(gè)盒中個(gè)盒中, ,每盒至少一每盒至少一 有多少裝法?有多少裝法?2 .2 .x+y+z+wx+y+z+w=100=100求這個(gè)方程組的自然數(shù)解求這個(gè)方程組的自然數(shù)解 的組數(shù)的組數(shù)3103C49C11mnC例例11.從從0,1,2,3,4,5,6,7

15、,8,9這十個(gè)數(shù)字中取出三這十個(gè)數(shù)字中取出三 個(gè)數(shù),使其和為不小于個(gè)數(shù),使其和為不小于10的偶數(shù)的偶數(shù),不同的不同的 取法有多少種?取法有多少種?解:這問(wèn)題中如果直接求不小于解:這問(wèn)題中如果直接求不小于10的偶數(shù)很的偶數(shù)很 困難困難,可用總體淘汰法??捎每傮w淘汰法。 這十個(gè)數(shù)字中有這十個(gè)數(shù)字中有5 5個(gè)偶數(shù)個(gè)偶數(shù)5 5個(gè)奇數(shù)個(gè)奇數(shù), ,所取的三個(gè)數(shù)含有所取的三個(gè)數(shù)含有3 3個(gè)偶個(gè)偶數(shù)的取法有數(shù)的取法有_,_,只含有只含有1 1個(gè)偶數(shù)的取法個(gè)偶數(shù)的取法有有_,_,和為偶數(shù)的取法共有和為偶數(shù)的取法共有_再淘汰和小于再淘汰和小于10的偶數(shù)共的偶數(shù)共_符合條件的取法共有符合條件的取法共有_ 35C12

16、55CC9 90130130150150170170230230250250270270410410450450430431255CC35C+- 9- 91255CC35C+我們班里有我們班里有4343位同學(xué)位同學(xué), ,從中任抽從中任抽5 5人人, ,正、正、副班長(zhǎng)、團(tuán)支部書(shū)記至少有一人在內(nèi)的副班長(zhǎng)、團(tuán)支部書(shū)記至少有一人在內(nèi)的抽法有多少種抽法有多少種? ?練習(xí)題十二十二. .平均分組問(wèn)題除法策略平均分組問(wèn)題除法策略例12. 6本不同的書(shū)平均分成本不同的書(shū)平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解: 分三步取書(shū)得分三步取書(shū)得 種方法種方法,但這里出現(xiàn)但這里出現(xiàn) 重復(fù)計(jì)數(shù)的現(xiàn)

17、象重復(fù)計(jì)數(shù)的現(xiàn)象,不妨記不妨記6本書(shū)為本書(shū)為ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 該分法記為該分法記為(AB,CD,EF),則則 中還有中還有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有共有 種取法種取法 ,而而 這些分法僅是這些分法僅是(AB,CD,EF)一種分法一種分法,故共故共 有有 種分法。種分法。222642CCC222642CCC33A222642CCC33A1 將將13個(gè)球隊(duì)分成個(gè)球隊(duì)分成3組組,一組一組5個(gè)隊(duì)個(gè)隊(duì),其它兩組其它兩組4 個(gè)隊(duì)個(gè)隊(duì), 有多少分法?有多少

18、分法?2.10名學(xué)生分成名學(xué)生分成3組組,其中一組其中一組4人人, 另兩組另兩組3人人 但正但正副班長(zhǎng)不能分在同一組副班長(zhǎng)不能分在同一組,有多少種不同有多少種不同 的分組方法的分組方法 (1540)544138422C C CA3.3.某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn)入某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn)入4 4名學(xué)生,名學(xué)生,要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排2 2名,則不同的安名,則不同的安排方案種數(shù)為排方案種數(shù)為_(kāi) 2226422290ACC A平均分成的組平均分成的組,不管它們的順序如何不管它們的順序如何,都是一種情況都是一種情況,所以所以分組后要

19、一定要除以分組后要一定要除以 (n為均分的組數(shù)為均分的組數(shù))避免重復(fù)計(jì)數(shù)。避免重復(fù)計(jì)數(shù)。nnA十三. 合理分類(lèi)與分步策略例例13.13.在一次演唱會(huì)上共在一次演唱會(huì)上共1010名演員名演員, ,其中其中8 8人能人能 能唱歌能唱歌,5,5人會(huì)跳舞人會(huì)跳舞, ,現(xiàn)要演出一個(gè)現(xiàn)要演出一個(gè)2 2人人 唱歌唱歌2 2人伴舞的節(jié)目人伴舞的節(jié)目, ,有多少選派方法有多少選派方法? ?解:10演員中有演員中有5人只會(huì)唱歌,人只會(huì)唱歌,2人只會(huì)跳舞人只會(huì)跳舞 3人為全能演員。人為全能演員。以只會(huì)唱歌的以只會(huì)唱歌的5 5人是否人是否選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究究只會(huì)唱只會(huì)唱的的5 5人中沒(méi)

20、有人選上唱歌人員共有人中沒(méi)有人選上唱歌人員共有_種種, ,只會(huì)唱的只會(huì)唱的5 5人中只有人中只有1 1人選上唱歌人人選上唱歌人員員_種種, ,只會(huì)唱的只會(huì)唱的5 5人中只有人中只有2 2人人選上唱歌人員有選上唱歌人員有_種,由分類(lèi)計(jì)數(shù)種,由分類(lèi)計(jì)數(shù)原理共有原理共有_種。種。2233CC112534CCC2255C C2233CC112534CCC2255C C+ + +解含有約束條件的排列組合問(wèn)題,可按元素的性質(zhì)進(jìn)行分類(lèi),按事件發(fā)生的連續(xù)過(guò)程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,分類(lèi)標(biāo)準(zhǔn)一旦確定要貫穿于解題過(guò)程的始終。1.1.從從4 4名男生和名男生和3 3名女生中選出名女生中選出4 4

21、人參加某個(gè)座人參加某個(gè)座 談會(huì),若這談會(huì),若這4 4人中必須既有男生又有女生,則人中必須既有男生又有女生,則不同的選法共有不同的選法共有_ _ 練習(xí)題2. 3 3成人成人2 2小孩乘船游玩小孩乘船游玩,1,1號(hào)船最多乘號(hào)船最多乘3 3人人, 2, 2 號(hào)船最多乘號(hào)船最多乘2 2人人,3,3號(hào)船只能乘號(hào)船只能乘1 1人人, ,他們?nèi)芜x他們?nèi)芜x 2 2只船或只船或3 3只船只船, ,但小孩不能單獨(dú)乘一只船但小孩不能單獨(dú)乘一只船, , 這這3 3人共有多少乘船方法人共有多少乘船方法. .十四十四. .構(gòu)造模型策略構(gòu)造模型策略例例14. 14. 馬路上有編號(hào)為馬路上有編號(hào)為1,2,3,4,5,6,7,

22、8,91,2,3,4,5,6,7,8,9的的 九只路燈九只路燈, ,現(xiàn)要關(guān)掉其中的現(xiàn)要關(guān)掉其中的3 3盞盞, ,但不能關(guān)但不能關(guān) 掉相鄰的掉相鄰的2 2盞或盞或3 3盞盞, ,也不能關(guān)掉兩端的也不能關(guān)掉兩端的2 2 盞盞, ,求滿(mǎn)足條件的關(guān)燈方法有多少種?求滿(mǎn)足條件的關(guān)燈方法有多少種?解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在6 6盞盞 亮燈的亮燈的5 5個(gè)空隙中插入個(gè)空隙中插入3 3個(gè)不亮的燈個(gè)不亮的燈 有有_ _ 種種35C練習(xí)題某排共有某排共有1010個(gè)座位,若個(gè)座位,若4 4人就坐,每人左右人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種??jī)蛇叾加锌瘴?,那么不同?/p>

23、坐法有多少種?120一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問(wèn)題直觀解決十五十五. .實(shí)際操作窮舉策略實(shí)際操作窮舉策略例例15.15.設(shè)有編號(hào)設(shè)有編號(hào)1,2,3,4,51,2,3,4,5的五個(gè)球和編號(hào)的五個(gè)球和編號(hào)1,21,2 3,4,53,4,5的五個(gè)盒子的五個(gè)盒子, ,現(xiàn)將現(xiàn)將5 5個(gè)球投入這五個(gè)球投入這五 個(gè)盒子內(nèi)個(gè)盒子內(nèi), ,要求每個(gè)盒子放一個(gè)球,并且要求每個(gè)盒子放一個(gè)球,并且 恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.,. 有多少投法有多少投法 解:從從5個(gè)球中取出個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有個(gè)與盒子對(duì)

24、號(hào)有_種種 還剩下還剩下3球球3盒序號(hào)不能對(duì)應(yīng),盒序號(hào)不能對(duì)應(yīng), 利用實(shí)際操作法,如果剩下操作法,如果剩下3,4,5號(hào)球號(hào)球, 3,4,5號(hào)盒號(hào)盒3號(hào)球裝號(hào)球裝4號(hào)盒時(shí),則號(hào)盒時(shí),則4,5號(hào)球有只有號(hào)球有只有1種種裝法裝法3 3號(hào)盒號(hào)盒4 4號(hào)盒號(hào)盒5 5號(hào)盒號(hào)盒34525C十五十五. .實(shí)際操作窮舉策略實(shí)際操作窮舉策略例例15.15.設(shè)有編號(hào)設(shè)有編號(hào)1,2,3,4,51,2,3,4,5的五個(gè)球和編號(hào)的五個(gè)球和編號(hào)1,21,2 3,4,53,4,5的五個(gè)盒子的五個(gè)盒子, ,現(xiàn)將現(xiàn)將5 5個(gè)球投入這五個(gè)球投入這五 個(gè)盒子內(nèi)個(gè)盒子內(nèi), ,要求每個(gè)盒子放一個(gè)球,并且要求每個(gè)盒子放一個(gè)球,并且 恰好有

25、兩個(gè)球的編號(hào)與盒子的編號(hào)相同恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.,. 有多少投法有多少投法 解:從從5個(gè)球中取出個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有個(gè)與盒子對(duì)號(hào)有_種種 還剩下還剩下3球球3盒序號(hào)不能對(duì)應(yīng),盒序號(hào)不能對(duì)應(yīng),25C利用實(shí)際操作法,如果剩下操作法,如果剩下3,4,5號(hào)球號(hào)球, 3,4,5號(hào)盒號(hào)盒3號(hào)球裝號(hào)球裝4號(hào)盒時(shí),則號(hào)盒時(shí),則4,5號(hào)球有只有號(hào)球有只有1種種裝法裝法,25C 同理同理3號(hào)球裝號(hào)球裝5號(hào)盒時(shí)號(hào)盒時(shí),4,5號(hào)球有也號(hào)球有也只有只有1種裝法種裝法,由分步計(jì)數(shù)原理有由分步計(jì)數(shù)原理有2 種種 練習(xí)題1.1. 同一寢室同一寢室4 4人人, ,每人寫(xiě)一張賀年卡集中起來(lái)每人寫(xiě)一張賀年卡

26、集中起來(lái), , 然后每人各拿一張別人的賀年卡,則四張然后每人各拿一張別人的賀年卡,則四張 賀年卡不同的分配方式有多少種?賀年卡不同的分配方式有多少種? (9)2.2.給圖中區(qū)域涂色給圖中區(qū)域涂色, ,要求相鄰區(qū)要求相鄰區(qū) 域不同色域不同色, ,現(xiàn)有現(xiàn)有4 4種可選顏色種可選顏色, ,則則 不同的著色方法有不同的著色方法有_種種213457272十六十六. 分解與合成策略分解與合成策略例例16. 3003016. 30030能被多少個(gè)不同的偶數(shù)整除能被多少個(gè)不同的偶數(shù)整除分析:先把分析:先把3003030030分解成質(zhì)因數(shù)的乘積形式分解成質(zhì)因數(shù)的乘積形式 30030=2 30030=23 35 5 7 7 11111313依題依題 意可知偶因數(shù)必先取意可知偶因數(shù)必先取2,2,再?gòu)钠溆嘣購(gòu)钠溆? 5個(gè)個(gè) 因數(shù)中任取若干個(gè)組成乘積,所有因數(shù)中任取若干個(gè)組成乘積,所有 的偶因數(shù)為:的偶因數(shù)為:012345555555C C C C C C例17.正方體的8個(gè)頂點(diǎn)可連成多少對(duì)異面 直線解:我們先從8個(gè)頂點(diǎn)中任取4個(gè)頂點(diǎn)構(gòu)成四 體共有體共_每個(gè)四面體有_對(duì)異面直線,正方體中的8個(gè)頂點(diǎn)可連成

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論