版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2014年山西省忻州中考數(shù)學真題及答案一、選擇題(共10小題,每小題3分,共30分)1(3分)計算2+3的結(jié)果是()A1B1C5D62(3分)如圖,直線AB、CD被直線EF所截,ABCD,1=110°,則2等于()A65°B70°C75°D80°3(3分)下列運算正確的是()A3a2+5a2=8a4Ba6a2=a12C(a+b)2=a2+b2D(a2+1)0=14(3分)如圖是我國古代數(shù)學家趙爽在為周髀算經(jīng)作注解時給出的“弦圖”,它解決的數(shù)學問題是()A黃金分割B垂徑定理C勾股定理D正弦定理5(3分)如圖是由三個小正方體疊成的一個幾何體,它的左
2、視圖是()ABCD6(3分)我們學習了一次函數(shù)、二次函數(shù)和反比例函數(shù),回顧學習過程,都是按照列表、描點、連線得到函數(shù)的圖象,然后根據(jù)函數(shù)的圖象研究函數(shù)的性質(zhì),這種研究方法主要體現(xiàn)的數(shù)學思想是()A演繹B數(shù)形結(jié)合C抽象D公理化7(3分)在大量重復試驗中,關于隨機事件發(fā)生的頻率與概率,下列說法正確的是()A頻率就是概率B頻率與試驗次數(shù)無關C概率是隨機的,與頻率無關D隨著試驗次數(shù)的增加,頻率一般會越來越接近概率8(3分)如圖,O是ABC的外接圓,連接OA、OB,OBA=50°,則C的度數(shù)為()A30°B40°C50°D80°9(3分)PM2.5是指大
3、氣中直徑小于或等于2.5m(1m=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害2.5m用科學記數(shù)法可表示為()A2.5×105mB0.25×107mC2.5×106mD25×105m10(3分)如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N若正方形ABCD的變長為a,則重疊部分四邊形EMCN的面積為()Aa2Ba2Ca2Da2二、填空題(共6小題,每小題3分,共18分)11(3分)計算:3a2b32a2b=_12
4、(3分)化簡+的結(jié)果是_13(3分)如圖,已知一次函數(shù)y=kx4的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y=在第一象限內(nèi)的圖象交于點C,且A為BC的中點,則k=_14(3分)甲、乙、丙三位同學打乒乓球,想通過“手心手背”游戲來決定其中哪兩個人先打,規(guī)則如下:三個人同時各用一只手隨機出示手心或手背,若只有兩個人手勢相同(都是手心或都是手背),則這兩人先打,若三人手勢相同,則重新決定那么通過一次“手心手背”游戲能決定甲打乒乓球的概率是_15(3分)一走廊拐角的橫截面積如圖,已知ABBC,ABDE,BCFG,且兩組平行墻壁間的走廊寬度都是1m,的圓心為O,半徑為1m,且EOF=90
5、6;,DE、FG分別與O相切于E、F兩點若水平放置的木棒MN的兩個端點M、N分別在AB和BC上,且MN與O相切于點P,P是的中點,則木棒MN的長度為_m16(3分)如圖,在ABC中,BAC=30°,AB=AC,AD是BC邊上的中線,ACE=BAC,CE交AB于點E,交AD于點F若BC=2,則EF的長為_三、解答題(共8小題,共72分)17(10分)(1)計算:(2)2sin60°()1×;(2)分解因式:(x1)(x3)+118(6分)解不等式組并求出它的正整數(shù)解:19(6分)閱讀以下材料,并按要求完成相應的任務幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是
6、特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形箏形所謂箏形,它的形狀與我們生活中風箏的骨架相似定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD判定:兩組鄰邊分別相等的四邊形是箏形有一條對角線垂直平分另一條對角線的四邊形是箏形顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:(1)請說出箏形和菱形的相同點和不同點各兩條;(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求
7、如下:頂點都在格點上;所涉及的圖案既是軸對稱圖形又是中心對稱圖形;將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影)20(10分)某公司招聘人才,對應聘者分別進行閱讀能力、思維能力和表達能力三項測試,其中甲、乙兩人的成績?nèi)缦卤恚▎挝唬悍郑喉椖咳藛T閱讀思維表達甲938673乙958179(1)若根據(jù)三項測試的平均成績在甲、乙兩人中錄用一人,那么誰將能被錄用?(2)根據(jù)實際需要,公司將閱讀、思維和表達能力三項測試得分按3:5:2的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?(3)公司按照(2)中的成績計算方法,將每位應聘者的最后成績繪制成如圖所示的頻數(shù)分布直方
8、圖(每組分數(shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分數(shù)x為:85x90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請說明理由,并求出本次招聘人才的錄用率21(7分)如圖,點A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內(nèi),它們的海拔高度AA,BB,CC分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度:是指坡面的鉛直高度與水平寬度的比)22(9分)某新建火車站站前廣場需要綠化的面積
9、為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程(1)該項綠化工程原計劃每天完成多少米2?(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?23(11分)課程學習:正方形折紙中的數(shù)學動手操作:如圖1,四邊形ABCD是一張正方形紙片,先將正方形ABCD對折,使BC與AD重合,折痕為EF,把這個正方形展平,然后沿直線CG折疊,使B點落在EF上,對應點為B數(shù)學思考:(1)求CBF的度數(shù);
10、(2)如圖2,在圖1的基礎上,連接AB,試判斷BAE與GCB的大小關系,并說明理由;解決問題:(3)如圖3,按以下步驟進行操作:第一步:先將正方形ABCD對折,使BC與AD重合,折痕為EF,把這個正方形展平,然后繼續(xù)對折,使AB與DC重合,折痕為MN,再把這個正方形展平,設EF和MN相交于點O;第二步:沿直線CG折疊,使B點落在EF上,對應點為B,再沿直線AH折疊,使D點落在EF上,對應點為D;第三步:設CG、AH分別與MN相交于點P、Q,連接BP、PD、DQ、QB,試判斷四邊形BPDQ的形狀,并證明你的結(jié)論24(13分)綜合與探究:如圖,在平面直角坐標系xOy中,四邊形OABC是平行四邊形,
11、A、C兩點的坐標分別為(4,0),(2,3),拋物線W經(jīng)過O、A、C三點,D是拋物線W的頂點(1)求拋物線W的解析式及頂點D的坐標;(2)將拋物線W和OABC一起先向右平移4個單位后,再向下平移m(0m3)個單位,得到拋物線W和OABC,在向下平移的過程中,設OABC與OABC的重疊部分的面積為S,試探究:當m為何值時S有最大值,并求出S的最大值;(3)在(2)的條件下,當S取最大值時,設此時拋物線W的頂點為F,若點M是x軸上的動點,點N時拋物線W上的動點,試判斷是否存在這樣的點M和點N,使得以D、F、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由參考答案
12、:一、選擇題(共10小題,每小題3分,共30分)1(3分)計算2+3的結(jié)果是()A1B1C5D6考點:有理數(shù)的加法 分析:根據(jù)異號兩數(shù)相加的法則進行計算即可解答:解:因為2,3異號,且|2|3|,所以2+3=1故選A點評:本題主要考查了異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值2(3分)如圖,直線AB、CD被直線EF所截,ABCD,1=110°,則2等于()A65°B70°C75°D80°考點:平行線的性質(zhì) 分析:根據(jù)“兩直線平行,同旁內(nèi)角互補”和“對頂角相等”來求2的度數(shù)解答:解:如圖,ABCD,1=110°
13、,1+3=180°,即100+3=180°,3=70°,2=3=70°故選:B點評:本題考查了平行線的性質(zhì)總結(jié):平行線性質(zhì)定理定理1:兩條平行線被第三條直線所截,同位角相等 簡單說成:兩直線平行,同位角相等定理2:兩條平行線被地三條直線所截,同旁內(nèi)角互補簡單說成:兩直線平行,同旁內(nèi)角互補 定理3:兩條平行線被第三條直線所截,內(nèi)錯角相等 簡單說成:兩直線平行,內(nèi)錯角相等3(3分)下列運算正確的是()A3a2+5a2=8a4Ba6a2=a12C(a+b)2=a2+b2D(a2+1)0=1考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;零指數(shù)冪 專題:計算題分
14、析:A、原式合并同類項得到結(jié)果,即可做出判斷;B、原式利用同底數(shù)冪的乘法法則計算得到結(jié)果,即可做出判斷;C、原式利用完全平方公式展開得到結(jié)果,即可做出判斷;D、原式利用零指數(shù)冪法則計算得到結(jié)果,即可做出判斷解答:解:A、原式=8a2,故選項錯誤;B、原式=a8,故選項錯誤;C、原式=a2+b2+2ab,故選項錯誤;D、原式=1,故選項正確故選D點評:此題考查了完全平方公式,合并同類項,同底數(shù)冪的乘法,以及零指數(shù)冪,熟練掌握公式及法則是解本題的關鍵4(3分)如圖是我國古代數(shù)學家趙爽在為周髀算經(jīng)作注解時給出的“弦圖”,它解決的數(shù)學問題是()A黃金分割B垂徑定理C勾股定理D正弦定理考點:勾股定理的證
15、明分析:“弦圖”,說明了直角三角形的三邊之間的關系,解決了勾股定理的證明解答:解:“弦圖”,說明了直角三角形的三邊之間的關系,解決的問題是:勾股定理故選C點評:本題考查了勾股定理的證明,勾股定理證明的方法最常用的思路是利用面積證明5(3分)如圖是由三個小正方體疊成的一個幾何體,它的左視圖是()ABCD考點:簡單組合體的三視圖分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案解答:解:從左邊看第一層一個正方形,第二層一個正方形,故選:C點評:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖6(3分)我們學習了一次函數(shù)、二次函數(shù)和反比例函數(shù),回顧學習過程,都是按照列表、描點、連線得到函數(shù)的圖象
16、,然后根據(jù)函數(shù)的圖象研究函數(shù)的性質(zhì),這種研究方法主要體現(xiàn)的數(shù)學思想是()A演繹B數(shù)形結(jié)合C抽象D公理化考點:二次函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);反比例函數(shù)的性質(zhì)專題:數(shù)形結(jié)合分析:從函數(shù)解析式到函數(shù)圖象,再利用函數(shù)圖象研究函數(shù)的性質(zhì)正是數(shù)形結(jié)合的數(shù)學思想的體現(xiàn)解答:解:學習了一次函數(shù)、二次函數(shù)和反比例函數(shù),都是按照列表、描點、連線得到函數(shù)的圖象,然后根據(jù)函數(shù)的圖象研究函數(shù)的性質(zhì),這種研究方法主要體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想故選B點評:本題考查了二次函數(shù)的性質(zhì):二次函數(shù)y=ax2+bx+c(a0)的頂點坐標是(,),對稱軸直線x=,二次函數(shù)y=ax2+bx+c(a0)的圖象具有如下性質(zhì):當a0時,拋物線
17、y=ax2+bx+c(a0)的開口向上,x時,y隨x的增大而減??;x時,y隨x的增大而增大;x=,時,y取得最小值,即頂點是拋物線的最低點;當a0時,拋物線y=ax2+bx+c(a0)的開口向下,x時,y隨x的增大而增大;x時,y隨x的增大而減??;x=時,y取得最大值,即頂點是拋物線的最高點7(3分)在大量重復試驗中,關于隨機事件發(fā)生的頻率與概率,下列說法正確的是()A頻率就是概率B頻率與試驗次數(shù)無關C概率是隨機的,與頻率無關D隨著試驗次數(shù)的增加,頻率一般會越來越接近概率考點:利用頻率估計概率分析:根據(jù)大量重復試驗事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近,可以用這個常數(shù)估計這個事件發(fā)生的概率解答解
18、答:解:大量重復試驗事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近,可以用這個常數(shù)估計這個事件發(fā)生的概率,A、B、C錯誤,D正確故選D點評:本題考查了利用頻率估計概率的知識,大量重復試驗事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近,可以用這個常數(shù)估計這個事件發(fā)生的概率8(3分)如圖,O是ABC的外接圓,連接OA、OB,OBA=50°,則C的度數(shù)為()A30°B40°C50°D80°考點:圓周角定理分析:根據(jù)三角形的內(nèi)角和定理求得AOB的度數(shù),再進一步根據(jù)圓周角定理求解解答:解:OA=OB,OBA=50°,OAB=OBA=50°,AOB=180
19、°50°×2=80°,C=AOB=40°故選:B點評:此題綜合運用了三角形的內(nèi)角和定理以及圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半9(3分)PM2.5是指大氣中直徑小于或等于2.5m(1m=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害2.5m用科學記數(shù)法可表示為()A2.5×105mB0.25×107mC2.5×106mD25×105m考點:科學記數(shù)法表示較小的數(shù)分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a
20、×10n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定解答:解:2.5m×0.000001m=2.5×106m;故選:C點評:本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10n,其中1|a|10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定10(3分)如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N若正方形ABCD的變長為a,則重疊部分四邊形EMCN的面積為()Aa2Ba2Ca2Da2考點:全等三角形的判定與性
21、質(zhì);正方形的性質(zhì)分析:作EMBC于點M,EQCD于點Q,EPMEQN,利用四邊形EMCN的面積等于正方形MCQE的面積求解解答:解:作EMBC于點M,EQCD于點Q,四邊形ABCD是正方形,BCD=90°,又EPM=EQN=90°,PEQ=90°,PEM+MEQ=90°,三角形FEG是直角三角形,NEF=NEQ+MEQ=90°,PEM=NEQ,AC是BCD的角平分線,EPC=EQC=90°,EP=EN,四邊形MCQE是正方形,在EPM和EQN中,EPMEQN(ASA)SEQN=SEPM,四邊形EMCN的面積等于正方形MCQE的面積,正
22、方形ABCD的邊長為a,AC=a,EC=2AE,EC=a,EP=PC=a,正方形MCQE的面積=a×a=a2,四邊形EMCN的面積=a2,故選:D點評:本題主要考查了正方形的性質(zhì)及全等三角形的判定及性質(zhì),解題的關鍵是作出輔助線,證出EPMEQN二、填空題(共6小題,每小題3分,共18分)11(3分)計算:3a2b32a2b=6a4b4考點:單項式乘單項式分析:根據(jù)單項式與單項式相乘,把他們的系數(shù)分別相乘,相同字母的冪分別相加,其余字母連同他的指數(shù)不變,作為積的因式,計算即可解答:解:3a2b32a2b=(3×2)×(a2a2)(b3b)=6a4b4故答案為:6a4
23、b4點評:此題考查了單項式乘以單項式,熟練掌握運算法則是解本題的關鍵12(3分)化簡+的結(jié)果是考點:分式的加減法專題:計算題分析:原式通分并利用同分母分式的加法法則計算即可得到結(jié)果解答:解:原式=+=故答案為:點評:此題考查了分式的加減法,熟練掌握運算法則是解本題的關鍵13(3分)如圖,已知一次函數(shù)y=kx4的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y=在第一象限內(nèi)的圖象交于點C,且A為BC的中點,則k=4考點:反比例函數(shù)與一次函數(shù)的交點問題專題:計算題分析:先確定B點坐標,根據(jù)A為BC的中點,則點C和點B關于點A中心對稱,所以C點的縱坐標為4,再利用反比例函數(shù)圖象上點的坐標特征可確定
24、C點坐標,然后把C點坐標代入y=kx4即可得到k的值解答:解:把y=0代入y=kx4得y=4,則B點坐標為(0,4),A為BC的中點,C點的縱坐標為4,把y=4代入y=得x=2,C點坐標為(2,4),把C(2,4)代入y=kx4得2k4=4,解得k=4故答案為4點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)圖象的交點坐標滿足兩函數(shù)解析式14(3分)甲、乙、丙三位同學打乒乓球,想通過“手心手背”游戲來決定其中哪兩個人先打,規(guī)則如下:三個人同時各用一只手隨機出示手心或手背,若只有兩個人手勢相同(都是手心或都是手背),則這兩人先打,若三人手勢相同,則重新決定那么通過一次“手心手
25、背”游戲能決定甲打乒乓球的概率是考點:列表法與樹狀圖法分析:首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與通過一次“手心手背”游戲能決定甲打乒乓球的情況,再利用概率公式即可求得答案解答:解:分別用A,B表示手心,手背畫樹狀圖得:共有8種等可能的結(jié)果,通過一次“手心手背”游戲能決定甲打乒乓球的有4種情況,通過一次“手心手背”游戲能決定甲打乒乓球的概率是:=故答案為:點評:本題考查的是用列表法或畫樹狀圖法求概率列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比15(3分)
26、一走廊拐角的橫截面積如圖,已知ABBC,ABDE,BCFG,且兩組平行墻壁間的走廊寬度都是1m,的圓心為O,半徑為1m,且EOF=90°,DE、FG分別與O相切于E、F兩點若水平放置的木棒MN的兩個端點M、N分別在AB和BC上,且MN與O相切于點P,P是的中點,則木棒MN的長度為(42)m考點:切線的性質(zhì)專題:應用題分析:連接OB,延長OF,OE分別交BC于H,交AB于G,證得四邊形BGOH是正方形,然后證得OB經(jīng)過點P,根據(jù)勾股定理切點OB的長,因為半徑OP=1,所以BP=21,然后求得BPMBPN得出P是MN的中點,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求得解答:解:連
27、接OB,延長OF,OE分別交BC于H,交AB于G,DE、FG分別與O相切于E、F兩點,OEED,OFFG,ABDE,BCFG,OGAB,OHBC,EOF=90°,四邊形BGOH是矩形,兩組平行墻壁間的走廊寬度都是1m,O半徑為1m,OG=OH=2,矩形BGOH是正方形,BOG=BOH=45°,P是的中點,OB經(jīng)過P點,在正方形BGOH中,邊長=2,OB=2,OP=1,BP=21,p是MN與O的切點,OBMN,OB是正方形BGOH的對角線,OBG=OBH=45°,在BPM與BPN中BPMBPN(ASA)MP=NP,MN=2BP,BP=21,MN=2(21)=42,點
28、評:本題考查了圓的切線的性質(zhì),正方形的判定和性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理的應用,O、P、B三點共線是本題的關鍵16(3分)如圖,在ABC中,BAC=30°,AB=AC,AD是BC邊上的中線,ACE=BAC,CE交AB于點E,交AD于點F若BC=2,則EF的長為1考點:勾股定理;等腰三角形的性質(zhì);含30度角的直角三角形;等腰直角三角形分析:過F點作FGBC根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理可得AF=CF,在RtCDF中,根據(jù)三角函數(shù)可得AF=CF=2,DF=,根據(jù)平行線分線段成比例可得比例式GF:BD=AF:AD,求得GF=42,再根據(jù)平行線分線段成比例可得比例式EF:
29、EC=GF:BC,依此即可得到EF=1解答:解:過F點作FGBC在ABC中,AB=AC,AD是BC邊上的中線,BD=CD=BC=1,BAD=CAD=BAC=15°,ADBC,ACE=BAC,CAD=ACE=15°,AF=CF,ACD=(180°30°)÷2=75°,DCE=75°15°=60°,在RtCDF中,AF=CF=2,DF=CDtan60°=,F(xiàn)GBC,GF:BD=AF:AD,即GF:1=2:(2+),解得GF=42,EF:EC=GF:BC,即EF:(EF+2)=(42):2,解得EF=
30、1故答案為:1點評:綜合考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理可得,三角函數(shù),平行線分線段成比例,以及方程思想,本題的難點是作出輔助線,尋找解題的途徑三、解答題(共8小題,共72分)17(10分)(1)計算:(2)2sin60°()1×;(2)分解因式:(x1)(x3)+1考點:實數(shù)的運算;因式分解-運用公式法;負整數(shù)指數(shù)冪;特殊角的三角函數(shù)值分析:(1)本題涉及零指數(shù)冪、乘方、特殊角的三角函數(shù)值、二次根式化簡四個考點針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果;(2)根據(jù)整式的乘法,可得多項式,根據(jù)因式分解的方法,可得答案解答:解:(1)原式=22
31、15;=2;(2)原式=x24x+3+1=(x2)2點評:本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型解決此類題目的關鍵是熟記特殊角的三角函數(shù)值,熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算18(6分)解不等式組并求出它的正整數(shù)解:考點:解一元一次不等式組;一元一次不等式組的整數(shù)解分析:先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集解答:解:解得:x,解得:x2,則不等式組的解集是:x2則正整數(shù)解是:1,2點評:本題考查的是一元一次不等式組的解,解此類題目常常要結(jié)合數(shù)軸來判斷還可以觀察不等式的解,若x較小的數(shù)、較大的數(shù),那么解集為x介于兩
32、數(shù)之間19(6分)閱讀以下材料,并按要求完成相應的任務幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形箏形所謂箏形,它的形狀與我們生活中風箏的骨架相似定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD判定:兩組鄰邊分別相等的四邊形是箏形有一條對角線垂直平分另一條對角線的四邊形是箏形顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
33、(1)請說出箏形和菱形的相同點和不同點各兩條;(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:頂點都在格點上;所涉及的圖案既是軸對稱圖形又是中心對稱圖形;將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影)考點:利用旋轉(zhuǎn)設計圖案;菱形的性質(zhì);利用軸對稱設計圖案 分析:(1)利用菱形的性質(zhì)以及結(jié)合圖形得出箏形的性質(zhì)分別得出異同點即可;(2)利用軸對稱圖形和中心對稱圖形的定義結(jié)合題意得出答案解答:解:(1)相同點:兩組鄰邊分別相等;有一組對角相等;一條對角線垂直平分另一條對角線;一條對角線平分一組對角;都是
34、軸對稱圖形;面積等于對角線乘積的一半;不同點:菱形的對角線互相平分,箏形的對角線不互相平分;菱形的四邊都相等,箏形只有兩組鄰邊分別相等;菱形的兩組對邊分別平行,箏形的對邊不平行;菱形的兩組對角分別相等,箏形只有一組對角相等;菱形的鄰角互補,箏形的鄰角不互補;菱形的既是軸對稱圖形又是中心對稱圖形,箏形是軸對稱圖形不是中心對稱圖形;(2)如圖所示:點評:此題主要考查了利用旋轉(zhuǎn)設計圖案,借助網(wǎng)格得出符合題意的圖形是解題關鍵20(10分)某公司招聘人才,對應聘者分別進行閱讀能力、思維能力和表達能力三項測試,其中甲、乙兩人的成績?nèi)缦卤恚▎挝唬悍郑喉椖咳藛T閱讀思維表達甲938673乙958179(1)若
35、根據(jù)三項測試的平均成績在甲、乙兩人中錄用一人,那么誰將能被錄用?(2)根據(jù)實際需要,公司將閱讀、思維和表達能力三項測試得分按3:5:2的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?(3)公司按照(2)中的成績計算方法,將每位應聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分數(shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分數(shù)x為:85x90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請說明理由,并求出本次招聘人才的錄用率考點:頻數(shù)(率)分布直方圖;算術平均數(shù);加權(quán)平均數(shù)分析:(1)根據(jù)平均數(shù)的計算公式分別進行計算即可;(2)根據(jù)加權(quán)平均數(shù)的計算公式分別
36、進行解答即可;(3)由直方圖知成績最高一組分數(shù)段85x90中有7人,公司招聘8人,再根據(jù)x甲=85.5分,得出甲在該組,甲一定能被錄用,在80x85這一組內(nèi)有10人,僅有1人能被錄用,而x乙=84.8分,在這一段內(nèi)不一定是最高分,得出乙不一定能被錄用;最后根據(jù)頻率=進行計算,即可求出本次招聘人才的錄用率解答:解:(1)甲的平均成績是:x甲=84(分),乙的平均成績?yōu)椋簒乙=85(分),x乙x甲,乙將被錄用;(2)根據(jù)題意得:x甲=85.5(分),x乙=84.8(分);x甲x乙,甲將被錄用;(3)甲一定被錄用,而乙不一定能被錄用,理由如下:由直方圖知成績最高一組分數(shù)段85x90中有7人,公司招聘
37、8人,又因為x甲=85.5分,顯然甲在該組,所以甲一定能被錄用;在80x85這一組內(nèi)有10人,僅有1人能被錄用,而x乙=84.8分,在這一段內(nèi)不一定是最高分,所以乙不一定能被錄用;由直方圖知,應聘人數(shù)共有50人,錄用人數(shù)為8人,所以本次招聘人才的錄用率為=16%點評:此題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題21(7分)如圖,點A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內(nèi),它們的海拔高度AA,BB,CC分別為110米、310米、7
38、10米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度:是指坡面的鉛直高度與水平寬度的比)考點:解直角三角形的應用-坡度坡角問題專題:應用題分析:過點A作AECC'于點E,交BB'于點F,過點B作BDCC'于點D,分別求出AE、CE,利用勾股定理求解AC即可解答:解:過點A作AECC'于點E,交BB'于點F,過點B作BDCC'于點D,則AFB、BDC、AEC都是直角三角形,四邊形AA'B'F,BB'C'D和BFED都是
39、矩形,BF=BB'B'F=BB'AA'=310110=200,CD=CC'C'D=CC'BB'=710310=400,i1=1:2,i2=1:1,AF=2BF=400,BD=CD=400,又EF=BD=400,DE=BF=200,AE=AF+EF=800,CE=CD+DE=600,在RtAEC中,AC=1000(米)答:鋼纜AC的長度是1000米點評:本題考查了解直角三角形的應用,解答本題的關鍵是理解坡度坡角的定義,及勾股定理的表達式,難度一般22(9分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000
40、米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程(1)該項綠化工程原計劃每天完成多少米2?(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?考點:一元二次方程的應用;分式方程的應用分析:(1)利用原工作時間現(xiàn)工作時間=4這一等量關系列出分式方程求解即可;(2)根據(jù)矩形的面積和為56平方米列出一元二次方程求解即可解答:解:(1)設該項綠化工程原計劃每天完成x米2,根據(jù)題意得:=4解得:x=2000,經(jīng)檢驗,x=2000是原方
41、程的解,答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據(jù)題意得,(203x)(82x)=56解得:x=2或x=(不合題意,舍去)答:人行道的寬為2米點評:本題考查了分式方程及一元二次方程的應用,解分式方程時一定要檢驗23(11分)課程學習:正方形折紙中的數(shù)學動手操作:如圖1,四邊形ABCD是一張正方形紙片,先將正方形ABCD對折,使BC與AD重合,折痕為EF,把這個正方形展平,然后沿直線CG折疊,使B點落在EF上,對應點為B數(shù)學思考:(1)求CBF的度數(shù);(2)如圖2,在圖1的基礎上,連接AB,試判斷BAE與GCB的大小關系,并說明理由;解決問題:(3)如圖3,按以
42、下步驟進行操作:第一步:先將正方形ABCD對折,使BC與AD重合,折痕為EF,把這個正方形展平,然后繼續(xù)對折,使AB與DC重合,折痕為MN,再把這個正方形展平,設EF和MN相交于點O;第二步:沿直線CG折疊,使B點落在EF上,對應點為B,再沿直線AH折疊,使D點落在EF上,對應點為D;第三步:設CG、AH分別與MN相交于點P、Q,連接BP、PD、DQ、QB,試判斷四邊形BPDQ的形狀,并證明你的結(jié)論考點:四邊形綜合題分析:(1)由對折得出CB=CB,在RTBFC中,sinCBF=,得出CBF=30°,(2)連接BB交CG于點K,由對折可知,BAE=BBE,由BBE+KBC=90
43、76;,KBC+GCB=90°,得到BBE=GCB,又由折疊知GCB=GCB得BAE=GCB,(3)連接AB利用三角形全等及對稱性得出EB=NP=FD=MQ,由兩次對折可得,OE=ON=OF=OM,OB=OP=0D=OQ,四邊形BPDQ為矩形,由對折知,MNEF,于點O,PQBD于點0,得到四邊形BPDQ為正方形,解答:解:(1)如圖1,由對折可知,EFC=90°,CF=CD,四邊形ABCD是正方形,CD=CB,CF=BC,CB=CB,CF=CB在RTBFC中,sinCBF=,CBF=30°,(2)如圖2,連接BB交CG于點K,由對折可知,EF垂直平分AB,BA=
44、BB,BAE=BBE,四邊形ABCD是正方形,ABC=90°,BBE+KBC=90°,由折疊知,BKC=90°,KBC+GCB=90°,BBE=GCB,又由折疊知,GCB=GCB,BAE=GCB,(3)四邊形BPDQ為正方形,證明:如圖3,連接AB由(2)可知BAE=GCB,由折疊可知,GCB=PCN,BAE=PCN,由對折知AEB=CNP=90°,AE=AB,CN=BC,又四邊形ABCD是正方形,AB=BC,AE=CN,在AEB和CNPAEBCNPEB=NP,同理可得,F(xiàn)D=MQ,由對稱性可知,EB=FD,EB=NP=FD=MQ,由兩次對折可得,OE=ON=OF=OM,OB=OP=0D=OQ,四邊形BPDQ為矩形,由對折知,MNEF,于點O,PQB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安裝合同匯編3篇
- 擺脫缺陷責任書3篇
- 教育培訓課程委托3篇
- 文明進步承諾3篇
- 工程小修施工協(xié)議3篇
- 教育機構(gòu)培訓師雇傭合同范本3篇
- 工傷保險授權(quán)委托書范本3篇
- 商業(yè)綜合體幕墻改造合同
- 西安市精裝房買賣合同樣本
- 獵頭合作協(xié)議書范例
- 2025版寒假特色作業(yè)
- Unit 7 Will people have robots Section B 1a-1e 教學實錄 2024-2025學年人教版英語八年級上冊
- 國內(nèi)外航空安全形勢
- 《雷達原理》課件-1.1.6教學課件:雷達對抗與反對抗
- 微信小程序云開發(fā)(赤峰應用技術職業(yè)學院)知到智慧樹答案
- 遼寧省撫順市清原縣2024屆九年級上學期期末質(zhì)量檢測數(shù)學試卷(含解析)
- 2024-2025學年上學期福建高二物理期末卷2
- 2024四川阿壩州事業(yè)單位和州直機關招聘691人歷年管理單位遴選500模擬題附帶答案詳解
- 麻醉科工作計劃
- 四川省2023年普通高中學業(yè)水平考試物理試卷 含解析
- 【MOOC】中級財務會計-北京交通大學 中國大學慕課MOOC答案
評論
0/150
提交評論