《高等數(shù)學(xué)》同步練習(xí)冊(cè)(上)新答案_1137_第1頁(yè)
《高等數(shù)學(xué)》同步練習(xí)冊(cè)(上)新答案_1137_第2頁(yè)
《高等數(shù)學(xué)》同步練習(xí)冊(cè)(上)新答案_1137_第3頁(yè)
《高等數(shù)學(xué)》同步練習(xí)冊(cè)(上)新答案_1137_第4頁(yè)
《高等數(shù)學(xué)》同步練習(xí)冊(cè)(上)新答案_1137_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第 1 章極限與連續(xù)1.1函數(shù)1、 (1)x(2)(,0)(0,3(3)0 a1 時(shí),ax1a , a1 時(shí),2x2(4)奇函數(shù)(5) log 2(0 x1)(6) x( x1)1 x2 12xsin(7) x2(8) g( x)2(9)525x1(10)ex11xee2、 f g( x)0x1 或 xee1 或 x1 0xee2x5x163、 f ( x)x216x2m a xf (x)4x6x21.2數(shù)列的極限1、 (1)D(2) C(3) D1.3函數(shù)的極限1、 (1)充分(2)充要3、 11.4無(wú)窮小與無(wú)窮大1、 (1)D(2) D(3) C(4) C1.5極限運(yùn)算法則參考答案1、 (

2、1)1(2) 1(3)(4)1(5) 022(2) 3x 22、(1) B( 2)D3、 (1) 0(3)1(4)2(5) 1(6)44、 a = 1b = - 161.6極限存在準(zhǔn)則兩個(gè)重要極限1、(1) 充分(2),3(3) 2, 3(4) 0,t 2(5) e3 ,e22222、 (1)x(2)(3) 2(4) 1(5)e 3(6)e 131.7無(wú)窮小的比較1、 (1) D(2) A(3) B(4) C2、 (1) 1(2) 2(3)3(4)13(6)22(5)3223、 e1.8函數(shù)的連續(xù)性與間斷點(diǎn)1、(1)充要(2) 2(3) 0, 2(4) 跳躍 ,無(wú)窮 ,可去32、 (1)B(2

3、) B(3) B(4) De 113、 (1)(2) e 24、 a =1 , b = 25、 (1) x 0, xk(k Z ) 是可去間斷點(diǎn),2x k (k 0) 是無(wú)窮間斷;(2) x 0 是跳躍間斷點(diǎn), x 1是無(wú)窮間斷點(diǎn)6、 a0, be1高等數(shù)學(xué)同步練習(xí)冊(cè)(上)1.10總習(xí)題1、 (1)2(2)max a, b, c, d(3)1(4) 2(5)282(6)2(7)31(9)跳躍可去(10) 2(8) 022、 (1)D(2) D(3) D(4) C(5) D(6)B(7) D(8) D(9) B(10) B(11) B900x 1003、( 1) p( x)190x 100x11

4、575x11530x0x100(2) P( p 60) x130xx2100x11515xx115( 3) P 15000 (元)。4、 (1) 2(2) 0(3)1(4)13e2(5) ln a(6)n a1 a2an(7) 15、 f ( x) x 32x2x ( 提示: 令 f ( x)x32 x 2ax b )6、 a =1b =127、 x0 和 xk( k Z) 是可去間斷點(diǎn)xk (k0)2是無(wú)窮間斷點(diǎn)8、 x1 是的跳躍間斷點(diǎn)9、 lim xn3n10、 f ( x) 在 (,) 處處連續(xù)1.11測(cè)驗(yàn)題1、 (1) A(2) C(3) C(4) B(5) B2、 (1) b(2)

5、1(3)e(4) (略)(5)(略)213、(1) 11(2)0( 4) e 2(3)22a4、 a=1, b=05、 x=0 為跳躍間斷點(diǎn), x=- 1 為第二類間斷點(diǎn),x=為可去間斷點(diǎn)6、17、2e1第 2 章導(dǎo)數(shù)與微分2.1導(dǎo)數(shù)的定義1、 (1)充分, 必要(2) 充要(3) f( x0 ) , (m n) f ( x0 )1137(4)9!(5),x42、 1x224x3、切線方程為y1ln 21 ,法線方程為 y2x ln 2 4x25、提示:左右導(dǎo)數(shù)定義6、 a2, b17、在 x 0 處連續(xù)且可導(dǎo)2.2求導(dǎo)法則1、 (1)2 xexx 2e x(2)1(3)2 cos 2x(4)

6、2 arcsin xx11x 2(5) 3x2 sin xx3 cos x(6)1sin 1(7)12 xx 2x 2x(1x 2 ) 22參考答案(8)2(9)x(10) e x tan e xx(1ln x) 21x 2x(12)cosx(13)12 f ( x)(11)x2 ) 3(14)3 (x)(a2xf2、( 1) 2xsin1cos1x0( 2)15x3xx0x02x(3)a x (ln a) n,( 1)n1 (n1)!xn(4)( 1)nn!, (1)n1 (n1)!(n1)!(xa) n 1( x1) n(1x) n(5)22n 1 cos(4x n)26x02、 (1)e

7、 x ( 2sec2 x tan xtan x 2 sec2 x)(2)2x0( 3)(6)x 1x x 2 ln x2 sin x ln x x 3(4)1(5) sec2 a x a x ln aax a 1a 2x 21(x a ) 2cosx ln xsin xx 2x 33、 2( 1) n n!1(1) n n!3( x 2) n 13( x 1) n 14、 50122550cos22sin 2 )2(sin 2xxxx2x(7) m cosmxcos nxn cos n1 xsin xsin mx3、 (1)f f ( x)f( x)(2) 2xex2( f (x2 )f( x

8、2 ) 4、 2ag ( a)5、 (1)yexyy sin(xy)(2) xy(3)xy ln yy 22yx sin(xy)xexyxyxy ln xx2(4)1 ( 11141) 3 ( x1)( 2x1)23x2xx3x3111(5)(1x) x ln(1x)x( x1)x 27、 xy08、 (1)2t(2)11t 22.3高階導(dǎo)數(shù)及相關(guān)變化率1、 (1)(4 x36 x) e x2, 2 f (x 2 )4 x 2 f( x 2 )(2)an sin(axn) , an cos(axn)226、 (1) 2(2)y(3)1(4)1a(1cos t) 2(t)(1 y) 3f7、 1

9、6(cmmin)252.4微分1、 (1)y18, dy11(2)1C , 2x C1 x(3)1 e4 xC,1xn1C(4)1 sin(3 x1) C4n132、 (1) A(2) B3、 (1)tanx dx(2)(1x2ln 3 x3)dx2x3 3x2(3) 2 f(12 x)cos( f (x) f(x) dx4、 2ln( xy) dx5、 2xcos(x2 ), cos(x2 )2 cos(x 2 ),3ln( xy)3x3高等數(shù)學(xué)同步練習(xí)冊(cè)(上)2.5總習(xí)題(14)2 (1) n n!1n 1( x1 n1 1、 (1)1(2) n0, n1 , n2(3)1, 1( x1)

10、1)nyxyex y(4)sintt costx cosxsin x(6) 2x0f(x0 )(15)4n 1 cos(4x)(16)dx4t3(5)2x32xyx xyexy1 f2、 (1)B(2)B(3) C(4) A(5)B4、 a(1) , bf(1), cf (1)5、2cot x3x3、 (1)1tanx3 xln 3 ln cosx22.6222x測(cè)驗(yàn)題(2)1ln x22(1 ln x)31(3)2sinxxx(4)xg(ln x) f (x)2xg (ln x) f (x)2x 2 g (ln x) f( x)2xx f 2 ( x)(5)02x22xx或x22(6)1 1

11、cot xex xsin x1ex2 x2(1ex )(7)(x )(x)( x) ( x)( x) ln( (x)( x)2 ( x)( x)(8)2 xy 2 f( x)f ( y)2yf ( x)xf( y)1, x01x(10) e 2(9)f(x)sin 2xx sin 2 x0x 2, x(11)0,3(12)1t 413a sincos 4(13)8e28t31、 (1) B(2) A(3) B(4) C(5) D2、 (1)1(2) 1(3) 0(4)( x16)ex(5)y2 x2a33、(1) ln x2 sin(2 1ln x )x2xex( 2)x11x sin x1e

12、 (2 x2cot x4(1ex ) )( 3) ax ln aaxa 1xx (ln x1)4、 15、 y(1y) 2( x1)2 6、 t21x2 (1y)34t7、x2 an sin(axn)2nan 150 2x 249x sin(ax(n1) )n(n 1)an 2 sin(axn 2)2228、 dy2ln( xy)dx9、 a1 , b1, c 13ln( xy)2第 3 章中值定理與導(dǎo)數(shù)應(yīng)用3.1 中值定理1、 (1)是,(2)是, e 1(3) 4 , ( 2, 1), ( 1,0), (0,1)(1,2)22、 (1)B(2) B4參考答案3.2洛必達(dá)法則1、 (1)1

13、, 4(2) 12 、(1)A(2) C3、 (1)1(2)1(4)11(3) 1(5)2383.3泰勒公式1、 (1)(0,2),( ,0)( 2,)(2)x 1和 32、 (1)C(2) C(3)A53、 (1)單調(diào)遞增區(qū)間為(,1 3,) ,單調(diào)遞減區(qū)間為 ( 1,3)111、 (1)x 21 x2!(2)x3x3!(3)x212!(4)x 2x2(5)1 x x22、1( x1)x3x no( x n )3!n!( 1)n 1 x2 n 1o( x2 n 1 )(2n1)!(1) n x2no(x 2 n )(2n)!(1) n1 xnn)no( xxno( xn )( x 1)2(1

14、) n1( x 1)n 1(在之間)n 2x, 1(2)單調(diào)遞增區(qū)間為( ,) ,單調(diào)遞減區(qū)間為(0,)ee4、極小值為 y(0)05、 a3 , b1227、當(dāng) a1 時(shí),方程無(wú)實(shí)根; 當(dāng) a1 時(shí),方程有一個(gè)實(shí)根x e ;ee當(dāng) 0a1 時(shí),方程有兩個(gè)實(shí)根。e8、最大值為 f ( 2)7 , 最小值為 f (4)219、當(dāng) x3時(shí)函數(shù)有最小值2710、 r3 V, h3 4V23.5函數(shù)圖形的描繪1、(1) 凹 , >(2)拐點(diǎn)(3)(1,4)3、5621( x 4)37( x4)211( x4)3( x44)4、 x x 2x3( 1) n 1 x no( xn )3( n1)!5

15、、1(2)16、 a4, b1(1)4331277、 f (0)1, f( 0)0, f(0)33.4函數(shù)的單調(diào)性和極值2、 (1) C(2) A113、 (1)( 1, e 2 )和 (1, e2 ) 為拐點(diǎn),凸區(qū)間為 ( 1,1),凹區(qū)間為 (,1)(1,)(2) (1, ln 2) 和 (1, ln 2)為拐點(diǎn),凸區(qū)間為 ( , 1)(1, ),凹區(qū)間為 ( 1,1)4、 a39, b226、 x1 為垂直漸近線, yx1 為斜漸近線ee5高等數(shù)學(xué)同步練習(xí)冊(cè)(上)3.6總習(xí)題1、 (1) 1(2)1, 0(3) 1(4)28(5) 22、 (1) A(2) C(3) D(4) D(5)

16、B(6)A( 7)B(8) C(9) D12e7、 (1)(2) e12(3)2219、 (1)極大值 f (0)2極小值e ef ( )e(2)極大值 y(1)0極小值為 y(1)33 410、 a2 , b113、2R314、凸區(qū)間為 ( ,1)(0,1) , 凹區(qū)間為 (1,0) (1,)拐點(diǎn)為 ( 0,0) ,x1 , x1 為垂直漸近線方程,y x 為斜漸近線方程33415、3 316時(shí)該方程有唯一實(shí)根16、( 1)當(dāng) ba 31633416時(shí)該方程無(wú)實(shí)根( 2)當(dāng) ba 3163.7測(cè)驗(yàn)題(5) 1 2x2x2(1) n 2xn( 1) n12xn 1), (01)(1 x) n

17、23、(1) 0(2)1(3)e(4)022115、 (1) c1(2) 0<a時(shí),2時(shí),有且僅有兩個(gè)實(shí)根; aee有唯一的實(shí)根 x11; a時(shí),無(wú)實(shí)根。e( 3) (1)g( x) 在 x0連續(xù)(2)g( x) 在 x0 可導(dǎo)(3)g (x) 在 x0 連續(xù)第 4章不定積分4.1不定積分的概念與性質(zhì)1、是同一函數(shù)的原函數(shù)2、arctan x2或arc cot x21 x23、 (1)x5x 2x C(2) exarcsin xC52(3)xcos xC(4)1C、y ln x1tan x424.2換元積分法第一類換元法1、 (1) B(2) C(3) A(4) B(5) D1 ln 1

18、2 ln xC12、(1) 11、 (1)(2)C(2) 凸區(qū)間為 (, 1)(0,1) ,凹區(qū)間為 (1,0) (1, ) ,264x3拐點(diǎn)為 ( 0,0)(3)2 sinx C(4)ln( 4cos x)C(5)1 arcsin x 3C(6)1 arctan 2 xCe2(3) 1,0)(0,1(4)363(7)l n2(ex )C(8)1(arctan x) 4C46參考答案3(9)1 (1 x2 ) 2C(10)F (e x )C32、(1) 1arcsin3 x149x 2C(2)1 x24 ln( 4 x 2 ) C32924.4有理函數(shù)和可化為有理函數(shù)的積分1、 1 x 31

19、x2x 8 ln x 3 ln x 1 4 ln x 1 C32(3)ln tan xC或 ln csc2 xcot 2x C(4)1Cx ln x4.2.2 第二類換元法1、2xln(12x )C2、 1arcsin xx1x 2C223、x 24 2 arctanx 24C122、ln( x1)ln x1C4、 1 ln( 2cos x)2 ln tan x325、1arctan( 2 tan x ) C2333、 1 ln x1 ln(6 x8 ) C648ln sin x C6x6、 6lnC16 x24、arcsin xxC 5、xC 6、x 211x2x 2xC114.3分部積分法

20、1、 (1)2 x cos x4 sin xC(2)1 ln x1C22xx(3)x ln 2 x2x ln x2xC(4)e x ( x22x 2)C(5)e xcos x)Cxsin(ln x)C2(sin x(6)cos(ln x)22、 (1)1 x 2 arcsin x1 arcsin xx1x 2C244(2)2ex (x1)C(3)1x 2x tan xln cos xC2(4)cot x ln(sin x)cot xxC(5)1e x (sin 2xsin 2x2)C3、 ex ( x1)C54.5總習(xí)題1、 (1) cos xC(2)xexC(3)f (3x)2、 (1)C(

21、2) B(3) A(4)D3、(1)13 x2C(2)cot xtan x C12Ce(3)(ln tanx)64(4)1 ln( x26x13)4arctan x3C24 x42(5)2x44 ln(1x)C(6)arccos 1C或 arctanx21Cx(7)4 4(ex1)74 4(ex1) 3C73(8)14x 24x35 ln( 2x14x24 x3) C44(9)1(1arctan 2 x )C(10)1esin 2 xCln 22 x27高等數(shù)學(xué)同步練習(xí)冊(cè)(上)(11)12(12)1ln cos xC2tan x C2 cos2 x(13)x1 cot xC(14)1 cos8

22、x1 cos2xC2 sin 2 x2164(15)1 ln tan x1 sec2xC4282(16)1arctan x41x 4C(17)xC81 ln( x8 1x8x ln x(18)1)ln x2C(19)ln ln(sin x) C24.6測(cè)驗(yàn)題1、 (1)f ( x) dx(2)1(3)1x2C(4) ln x 2x2C2(5)cos 1C(6)2x 3ln( 2 x31)Cx(7)1 x 2C(8)x cot xln cos xCx(9)1x 2ex2e x2C(10)xf ( x)C222、 (1)6 3x(3x) 3C3(20) 1 (sin x21 1(21) 2 ( c

23、os2cos x)21 ln csc(x) cot(x) C2441)2 ln tan xCx sin 2x(2)1 ( x3( x2)3C62)(3)2x1 ln( x1)4 x1Cx 29(4)C9x(22)1 arctanx1 (arctanx)2ln x1 ln(1x2 ) Cx22(23)sin xf ( x)C4、ln(1e x )xln(e x1)Cex( x1) 2Cx15、f ( x) dx2x21Cx16、1 x2ln(1x)C7、 x2 ln x1 C2x8、ln( x1x 2 )C1x 2(5)x3arctan xx21 ln(1x 2 )C366e x1 xCx03、F ( x)22112xCx0x22x21Cx14、f ( x) dx222( x1)C x1sin2第 5 章定積分及其應(yīng)用5.2定積分的性質(zhì)8351)dx1、(1) 0(2) 1(3)(4) 0(5)(2x22122、(1) D(2) C(3) C3、ln xdx

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論