線性代數上機作業(yè)題答案詳解(共11頁)_第1頁
線性代數上機作業(yè)題答案詳解(共11頁)_第2頁
線性代數上機作業(yè)題答案詳解(共11頁)_第3頁
線性代數上機作業(yè)題答案詳解(共11頁)_第4頁
線性代數上機作業(yè)題答案詳解(共11頁)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選優(yōu)質文檔-傾情為你奉上線性代數機算與應用作業(yè)題學號: 姓名: 成績: 一、機算題1利用函數rand和函數round構造一個5×5的隨機正整數矩陣A和B。(1)計算AB,AB和6A(2)計算,和(3)計算行列式,和(4)若矩陣A和B可逆,計算和(5)計算矩陣A和矩陣B的秩。解 輸入: A=round(rand(5)*10)B=round(rand(5)*10)結果為:A = 2 4 1 6 3 2 2 3 7 4 4 9 4 2 5 3 10 6 1 1 9 4 3 3 3B = 8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3

2、(1)輸入:A+B結果為: ans= 10 10 6 10 12 2 4 5 11 12 13 14 9 12 6 10 20 12 1 414 9 10 12 6輸入:A-B結果為:ans = -6 -2 -4 2 -6 2 0 1 3 -4 -5 4 -1 -8 4 -4 0 0 1 -2 4 -1 -4 -6 0輸入:6*A結果為:ans = 12 24 6 36 18 12 12 18 42 24 24 54 24 12 30 18 60 36 6 654 24 18 18 18(2)輸入:(A*B)'結果為:ans = 82 112 107 90 135 100 121 10

3、7 83 122 80 99 105 78 107 61 82 137 121 109 78 70 133 119 134輸入:B'*A'結果為:ans = 82 112 107 90 135 100 121 107 83 122 80 99 105 78 107 61 82 137 121 10978 70 133 119 134輸入:(A*B)100結果為:ans = 1.0e+270 * 1.6293 1.6526 1.4494 1.5620 1.6399 1.9374 1.9651 1.7234 1.8573 1.9499 2.4156 2.4501 2.1488 2.

4、3158 2.4313 2.0137 2.0425 1.7913 1.9305 2.02682.4655 2.5008 2.1932 2.3636 2.4815(3)輸入: D=det(A)結果為:D = 5121輸入:D=det(B)結果為:D = -9688輸入:D=det(A*B)結果為:D = -(4)輸入: inv(A)結果為:ans = 0.0217 -0.0662 -0.0445 -0.0135 0.1453 0.1845 -0.1582 0.0264 0.0475 -0.0334 -0.3199 0.2742 -0.0457 0.1178 -0.0088 0.1707 0.02

5、83 -0.1343 0.0471 -0.0002 -0.1619 0.1070 0.2785 -0.1877 -0.0490輸入: inv(B)結果為:ans = 0.1726 -0.1560 0.0357 -0.0667 -0.0471 -0.2642 0.2693 0.1786 0.2157 -0.2007 0.1982 -0.2957 -0.3214 -0.0993 0.4005 -0.1305 0.1478 0.1429 0.0050 -0.0553 0.0818 0.0577 -0.0357 -0.0316 -0.0223(5)輸入:rank(A)結果為:ans = 5輸入: ra

6、nk(B)結果為:ans = 52求解下列方程組(1)求非齊次線性方程組的唯一解。(2)求非齊次線性方程組的通解。解 (1)輸入:A=2,1,2,4;-14,17,-12,7;7,7,6,6;-2,-9,21,-7; b=5;8;5;10; x=Ab結果為:x = -0.8341 -0.2525 0.74171.3593(2)輸入: A=5,9,7,2,8;4,22,8,25,23;1,8,1,8,8;2,6,6,9,7;b=4;9;1;7;R,s=rref(A,b);m,n=size(A);x0=zeros(n,1);r=length(s);x0(s,:)=R(1:r,end);x0x=nu

7、ll(A,'r')結果為:x0 = -1.6635 0.1346 1.5865 0 0x = 4.1827 0.8558 -1.3269 -1.0577 -1.5673 -0.3942 1.0000 0 0 1.0000所以方程組的通解為x=k14.1827,-1.3269,-1.5673,1.0000,0+k20.8558,-1.0577,-0.3942,0,1.0000+-1.6635,0.1346,1.5862,0,03已知向量組,求出它的最大無關組,并用該最大無關組來線性表示其它向量。解 輸入: a1=3;4;0;8;3; a2=1;1;0;2;2; a3=2;3;0;

8、6;1; a4=9;3;2;1;2; a5=0;8;-2;21;10; A=a1,a2,a3,a4,a5; rref(A)結果為:ans = 1 0 1 0 2 0 1 -1 0 3 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0即 最大無關組為a1、a2、a4a3=a1-a2a5=2a1+3a2-a34求下列矩陣的特征值和特征向量,并判斷其正定性。(1);(2)解 (1)輸入: A=1,2,3;2,5,6;3,6,25; V,D=eig(A)結果為:V = 0.9357 0.3279 0.1303 -0.3518 0.8961 0.2706 -0.0280 -0.2990 0.

9、9538D = 0.1582 0 0 0 3.7297 0 0 0 27.1121 輸入: lamda_A=eig(A) 結果為:lamda_A = 0.1582 3.7297 27.1121即矩陣A正定 (2)輸入: B=-20,3,1;3,-10,-6;1,-6,-22; V,D=eig(B)結果為:V = -0.3810 0.9059 0.1850 0.4005 -0.0186 0.9161 0.8334 0.4231 -0.3557D = -25.3404 0 0 0 -19.5947 0 0 0 -7.0649 輸入: lamda_B=eig(B)結果為:lamda_B = -25.

10、3404 -19.5947 -7.0649 即矩陣B負定5. 用正交變換法將下列二次型化為標準形。其中“”為自己學號的后三位。解 輸入: A=1,0,2;0,2,1.5;2,1.5,3; V,a=eig(A)結果為:V = 0.7488 0.5139 0.4186 0.3389 -0.8396 0.4246 -0.5696 0.1761 0.8028a = -0.5214 0 0 0 1.6854 0 0 0 4.8361即標準型為f=-0.5214y12+1.6854y22+4.8361y32二、應用題1在某網格圖中,每一個節(jié)點的值與其相鄰的上、下、左、右四個節(jié)點的值有如下關系:,其中系數;

11、。如圖所示,如:。請計算該網格節(jié)點1,2,3,4的值(計算結果按四舍五入保留小數點后1位)。解 輸入: A=1,-0.3,-0.2,0;-0.4,1,0,-0.2;-0.3,0,1,-0.3;0,-0.3,-0.4,1; b=25;15;18;8; U=rref(A,b)結果為:U = 1.0000 0 0 0 45.8452 0 1.0000 0 0 40.8267 0 0 1.0000 0 42.9863 0 0 0 1.0000 37.4426即T1=45.8,T2=40.8,T3=43.0,T4=37.42假設一個城市的總人口數固定不變,但人口的分布情況變化如下:每年都有12%的市區(qū)居

12、民搬到郊區(qū);而有10%的郊區(qū)居民搬到市區(qū)。若開始有人口居住在市區(qū),人口居住在郊區(qū)。那么,20年后市區(qū)和郊區(qū)的人口數各是多少?解 輸入: A=0.88,0.1;0.12,0.9; X0=; X20=A20*X0結果為:X20 = 1.0e+005 * 4.5695 5.4305即20年后市區(qū)和郊區(qū)人口數約為和.3.一個混凝土生產企業(yè)可以生產出三種不同型號的混凝土,它們的具體配方比例如表1所示。表1混凝土的配方型號1混凝土型號2混凝土型號3混凝土水101010水泥222618砂323129石子536450灰058現在有一個用戶要求混凝土中含水、水泥、砂、石子及灰的比例分別為:24,52,73,13

13、3,12。那么,能否用這三種型號混凝土配出滿足用戶要求的混凝土?如果需要這種混凝土520噸,問三種混凝土各需要多少?解 輸入:u1=10;22;32;53;0;u2=10;26;31;64;5;u3=10;18;29;50;8;v=24;52;73;133;12;U=u1,u2,u3,v;U0,r=rref(U)結果為:U0 = 1.0000 0 0 0.6000 0 1.0000 0 0.8000 0 0 1.0000 1.0000 0 0 0 0 0 0 0 0r = 1 2 3 即能用這三種型號混凝土配出滿足用戶要求的混凝土。且520噸水泥需要1號130噸,2號173噸,3號217噸。4某城市有如下圖所示的交通圖,每一條道路都是單行道,圖中數字表示某一個時段該路段的車流量。若針

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論