行程問題17類型題_第1頁
行程問題17類型題_第2頁
行程問題17類型題_第3頁
行程問題17類型題_第4頁
行程問題17類型題_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、小升初行程問題17道典型題 行程問題是各大杯賽中必考的知識點,也是令無數(shù)同學(xué)望而生畏的一個難點,建議各位同學(xué)在復(fù)習(xí)行程問題的時候切忌一味鉆研偏題怪題,攻克每個行程專題中的最典型題目,將整個行程體系建立起來才是王道,在這里我給大家總結(jié)了每個專題中的最典型題目,拋磚引玉,通過一道典型題的學(xué)習(xí)帶大家復(fù)習(xí)相應(yīng)模塊的核心知識。一、 相遇與追及1、路程和路程差公式【例 1】 如下圖,某城市東西路與南北路交會于路口 .甲在路口 南邊560米的 點,乙在路口 .甲向北,乙向東同時勻速行走.4分鐘后二人距 的距離相等.再繼續(xù)行走24分鐘后,二人距 的距離恰又相等.問:甲、乙二人的速度各是多少?2、多人相遇【例

2、2】 有甲、乙、丙3人,甲每分鐘走100米,乙每分鐘走80米,丙每分鐘走75米.現(xiàn)在甲從東村,乙、丙兩人從西村同時出發(fā)相向而行,在途中甲與乙相遇6分鐘后,甲又與丙相遇. 那么,東、西兩村之間的距離是多少米?3、多次相遇【例 3】 甲、乙兩車分別同時從A、B兩地相對開出,第一次在離A地95千米處相遇.相遇后繼續(xù)前進(jìn)到達(dá)目的地后又立刻返回,第二次在離B地25千米處相遇.求A、B兩地間的距離是多少千米?二、 典型行程專題1、 火車過橋【例 4】 某列車通過250米長的隧道用25秒,通過210米長的隧道用23秒,若該列車與另一列長150米.時速為72千米的列車相遇,錯車而過需要幾秒鐘?2、流水行船【例

3、 5】 甲、乙兩艘游艇,靜水中甲艇每小時行 千米,乙艇每小時行 千米.現(xiàn)在甲、乙兩游艇于同一時刻相向出發(fā),甲艇從下游上行,乙艇從相距27千米的上游下行,兩艇于途中相遇后,又經(jīng)過4小時,甲艇到達(dá)乙艇的出發(fā)地.水流速度是每小時 千米.3、獵狗追兔【例 6】 獵人帶獵狗去捕獵,發(fā)現(xiàn)兔子剛跑出40米,獵狗去追兔子。已知獵狗跑2步的時間兔子跑3步,獵狗跑4步的距離與兔子跑7步的距離相等,求兔子再跑多遠(yuǎn),獵狗可以追上它?4、環(huán)形跑道【例 7】 甲和乙兩人分別從圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運(yùn)動,當(dāng)乙走了100米以后,他們第一次相遇,在甲走完一周前60米處又第二次相遇。求此圓形場

4、地的周長?5、走停問題【例 8】 小紅上山時每走30分鐘休息10分鐘,下山時每走30分鐘休息5分鐘.已知小紅下山的速度是上山速度的2倍,如果上山用了3時50分,那么下山用了多少時間?6、 變速問題【例 9】 (時間相同模型)甲、乙兩車分別從 、 兩地同時出發(fā),相向而行.出發(fā)時,甲,乙的速度之比是 ,相遇后甲的速度減少 ,乙的速度增加 .這樣當(dāng)甲到達(dá) 地時,乙離 地還有 千米.那么 、 兩地相距多少千米?【例 10】 (路程相同模型)一列火車出發(fā) 1 小時后因故停車 0.5 小時,然后以原速的3/4前進(jìn),最終到達(dá)目的地晚1.5 小時.若出發(fā) 1 小時后又前進(jìn) 90 公里再因故停車 0.5 小時,

5、然后同樣以原速的3/4前進(jìn),則到達(dá)目的地僅晚1 小時,那么整個路程為多少公里?7、 自動扶梯【例 11】 小志與小剛兩個孩在電梯上的行走速度分別為每秒 個臺階和每秒 個臺階,電梯運(yùn)行后,他倆沿電梯運(yùn)行方向的相同方向從一樓走上二樓,分別用時 秒和 秒,那么如果小志攀登靜止的電梯需要用時多少秒?8、發(fā)車間隔【例 12】 某人沿著電車道旁的便道以每小時 千米的速度步行,每 分鐘有一輛電車迎面開過,每12分鐘有一輛電車從后面追過,如果電車按相等的時間間隔以同一速度不停地往返運(yùn)行.問:電車的速度是多少?電車之間的時間間隔是多少?9、接送問題【例 13】 甲、乙、丙三個班的學(xué)生一起去郊外活動,他們租了一輛

6、大巴,但大巴只夠一個班的學(xué)生坐,于是他們計劃先讓甲班的學(xué)生步行,乙丙兩班的學(xué)生步行,甲班學(xué)生搭乘大巴一段路后,下車步行,然后大巴車回頭去接乙班學(xué)生,并追趕上步行的甲班學(xué)生,再回頭載上丙班學(xué)生后一直駛到終點,此時甲、乙兩班也恰好趕到終點,已知學(xué)生步行的速度為5千米/小時,大巴車的行駛速度為55千米/小時,出發(fā)地到終點之間的距離為8千米,求這些學(xué)生到達(dá)終點一共所花的時間.10、鐘表問題【例 14】 小紅在9點與10點之間開始解一道數(shù)學(xué)題,當(dāng)時時針和分針正好成一條直線,當(dāng)小紅解完這道題時,時針和分針剛好第一次重合,小紅解這道題用了多少時間?三、 綜合行程(主要運(yùn)用比例法)【例 15】 A、B兩地相距

7、 7200米,甲、乙分別從A,B兩地同時出發(fā),結(jié)果在距B地 2400米處相遇.如果乙的速度提高到原來的3倍,那么兩人可提前10分鐘相遇,則甲的速度是每分鐘行多少米?【例 16】 甲、乙兩人同時同地同向出發(fā),沿環(huán)形跑道勻速跑步.如果出發(fā)時乙的速度是甲的 倍,當(dāng)乙第一次追上甲時,甲的速度立即提高 ,而乙的速度立即減少 ,并且乙第一次追上甲的地點與第二次追上甲的地點相距100米,那么這條環(huán)形跑道的周長是 米.【例 17】 A、B兩地位于同一條河上,B地在A地下游100千米處.甲船從A地、乙船從B地同時出發(fā),相向而行,甲船到達(dá)B地、乙船到達(dá)A地后,都立即按原來路線返航.水速為2米/秒,且兩船在靜水中的

8、速度相同.如果兩船兩次相遇的地點相距20千米,那么兩船在靜水中的速度是 米/秒.一、相遇與追及1、路程和路程差公式【例1】某城市東西路與南北路交會于路口甲在路口南邊560米的點,乙在路口甲向北,乙向東同時勻速行走4分鐘后二人距路口的距離相等再繼續(xù)行走24分鐘后,二人距路口的距離恰又相等問:甲、乙二人的速度各是多少?2、多人相遇【例2】有甲、乙、丙3人,甲每分鐘走100米,乙每分鐘走80米,丙每分鐘走75米現(xiàn)在甲從東村,乙、丙兩人從西村同時出發(fā)相向而行,在途中甲與乙相遇6分鐘后,甲又與丙相遇.那么,東、西兩村之間的距離是多少米?3、多次相遇【例3】甲、乙兩車分別同時從A、B兩地相對開出,第一次在

9、離A地95千米處相遇相遇后繼續(xù)前進(jìn)到達(dá)目的地后又立刻返回,第二次在離B地25千米處相遇求A、B兩地間的距離是多少千米?二、典型行程專題1、火車過橋【例4】某列車通過250米長的隧道用25秒,通過210米長的隧道用23秒,若該列車與另一列長150米、時速為72千米的列車相遇,錯車而過需要幾秒鐘?2、流水行船【例5】甲、乙兩艘游艇,靜水中甲艇每小時行3.3千米,乙艇每小時行2.1千米現(xiàn)在甲、乙兩游艇于同一時刻相向出發(fā),甲艇從下游上行,乙艇從相距27千米的上游下行,兩艇于途中相遇后,又經(jīng)過4小時,甲艇到達(dá)乙艇的出發(fā)地水流速度是多少?3、獵狗追兔【例6】獵人帶獵狗去捕獵,發(fā)現(xiàn)兔子剛跑出40步,獵狗去追

10、兔子。已知獵狗跑2步的時間兔子跑3步,獵狗跑4步的距離與兔子跑7步的距離相等,求兔子再跑多遠(yuǎn),獵狗可以追上它?4、環(huán)形跑道【例7】甲乙兩人分別從圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運(yùn)動,當(dāng)乙走了100米以后,他們第一次相遇,在甲走完一周前60米處又第二次相遇。求此圓形場地的周長?解與分析:從出發(fā)到第一次相遇甲乙兩人共跑了半圈,其中乙跑了100米從出發(fā)到第二次相遇甲乙兩人共跑了三個半圈,其中甲跑的路程比一圈少60米,乙跑的路程比半圈多60米因為他們以勻速跑步,所以乙總共跑了三個100米,從而半圈的長度為:300-60=240米跑道長就為:240×2=480米解答:

11、解:(100×3-60)×2,=240×2,5、走停問題【例8】小紅上山時每走30分鐘休息10分鐘,下山時每走30分鐘休息5分鐘.已知小紅下山的速度是上山速度的2倍,如果上山用了3時50分,那么下山用了多少時間?6、變速問題【例9】(時間相同模型)甲、乙兩車分別從A、B兩地同時出發(fā),相向而行出發(fā)時,甲乙的速度之比是5:4,相遇后甲的速度減少20%,乙的速度增加20%這樣當(dāng)甲到達(dá)B地時,乙離A地還有10千米那么A、B兩地相距多少千米?【例10】(路程相同模型)一列火車出發(fā)1小時后因故停車0.5小時,然后以原速的3/4前進(jìn),最終到達(dá)目的地晚1.5小時若出發(fā)1小時后又前

12、進(jìn)90公里再因故停車0.5小時,然后同樣以原速的3/4前進(jìn),則到達(dá)目的地僅晚1小時,那么整個路程為多少公里?7、自動扶梯【例11】小志與小剛兩個孩在電梯上的行走速度分別為每秒2個臺階和每秒3個臺階,電梯運(yùn)行后,他倆沿電梯運(yùn)行方向的相同方向從一樓走上二樓,分別用時28秒和20秒,那么如果小志攀登靜止的電梯需要用時多少秒?8、發(fā)車間隔【例12】某人沿著電車道旁的便道以每小時千米的速度步行,每分鐘有一輛電車迎面開過,每12分鐘有一輛電車從后面追過,如果電車按相等的時間間隔以同一速度不停地往返運(yùn)行問:電車的速度是多少?電車之間的時間間隔是多少?9、接送問題【例13】甲、乙、丙三個班的學(xué)生一起去郊外活動

13、,他們租了一輛大巴,但大巴只夠一個班的學(xué)生坐,于是他們計劃先讓甲班的學(xué)生步行,乙丙兩班的學(xué)生步行,甲班學(xué)生搭乘大巴一段路后,下車步行,然后大巴車回頭去接乙班學(xué)生,并追趕上步行的甲班學(xué)生,再回頭載上丙班學(xué)生后一直駛到終點,此時甲、乙兩班也恰好趕到終點,已知學(xué)生步行的速度為5千米/小時,大巴車的行駛速度為55千米/小時,出發(fā)地到終點之間的距離為8千米,求這些學(xué)生到達(dá)終點一共所花的時間.10、鐘表問題【例14】小紅在9點與10點之間開始解一道數(shù)學(xué)題,當(dāng)時時針和分針正好成一條直線,當(dāng)小紅解完這道題時,時針和分針剛好第一次重合,小紅解這道題用了多少時間?三、綜合行程(主要運(yùn)用比例法)【例15】A、B兩地相距7200米,甲、乙分別從A,B兩地同時出發(fā),結(jié)果在距B地2400米處相遇如果乙的速度提高到原來的3倍,那么兩人可提前10分鐘相遇,則甲的速度是每分鐘行多少米?【例16】甲、乙兩人同時同地同向出發(fā),沿環(huán)形跑道勻速跑步如果出發(fā)時乙的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論