不同供鉀水平下Na+對棉花幼苗根系生長和K、Ca、Mg、Na含量的影響_第1頁
不同供鉀水平下Na+對棉花幼苗根系生長和K、Ca、Mg、Na含量的影響_第2頁
不同供鉀水平下Na+對棉花幼苗根系生長和K、Ca、Mg、Na含量的影響_第3頁
不同供鉀水平下Na+對棉花幼苗根系生長和K、Ca、Mg、Na含量的影響_第4頁
不同供鉀水平下Na+對棉花幼苗根系生長和K、Ca、Mg、Na含量的影響_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、    不同供鉀水平下na+對棉花幼苗根系生長和k、ca、mg、na含量的影響    胡澤彬+卜晶晶+王素芳+張志勇摘要:在水培條件下研究了不同nacl濃度(10.5和50.5 mmol/l)對不同鉀供應(yīng)水平(0.05和2.50 mmol/l)下棉花幼苗根系生長及k、ca、mg、na含量的影響。結(jié)果表明,0.05 mmol/l k條件下,nacl降低了根系中ca、k和mg含量,降低了k/na值,但兩種濃度的nacl均顯著提高了根系干物質(zhì)量、根系總長度和表面積,其中直徑0.2 mm的細根長度和表面積增加幅度最大,而2.50 mmol/l k條件下,僅10.

2、5mmol/l的nacl顯著促進了根系總長度和表面積,但對根系干物質(zhì)量沒有顯著影響,并且10.5 mmol/l的nacl顯著降低了k/na值,而對ca、k和mg含量無顯著影響。關(guān)鍵詞:棉花幼苗;nacl脅迫;供鉀水平;根系生長;鉀、鈉、鈣、鎂含量:s562.062;q945.78 :a :0439-8114(2014)19-4543-04doi:10.14088/ki.issn0439-8114.2014.19.009effects of na+ on root growth of cotton seedlings and contents of k,ca,mgunder different

3、potassium availabilityhu ze-bin,bu jing-jing,wang su-fang,zhang zhi-yong(school of life science and technology/cotton research institute, henan institute of science and technology, xinxiang 453003, henan,china)abstract: the effects of nacl with low concentration(10.5 and 50.5 mmol/l) on root growth

4、of cotton seedling and contents of k, ca, mg and na were studied under different k levels (0.05 and 2.5 mmol/l). under 0.05 mmol/l k, nacl reduced the contents of ca, k and mg and k/na value, but significantly increased weight of dry root and total root length and surface area. among which, fine roo

5、t with diameter0.2 mm was enhanced with the highest margin. under 2.5 mmol/l k, only 10.5 mmol/l nacl significantly increased total root length and surface area with no significant effects on weight of dry root. 10.5 mmol/l nacl significantly inhibited k/na value with no significant effects on conte

6、nts of ca, k and mg.key words: cotton seedlings; nacl stress; k level; root growth; k, na, ca, mg contents對動物而言,na是一種必需元素,在飲食中必須以相對大的數(shù)量存在。但是,按照arnon等1和epstein2對必需元素的定義,除特定的c4植物之外,na目前并沒有顯示是大多高等植物的必需元素。盡管na并沒符合必需元素的要求,但在植物營養(yǎng)方面發(fā)揮著獨特的作用。因此,在植物上,subbarao等3將na離子定義為功能性離子。棉花是喜k作物,k缺乏會降低纖維產(chǎn)量和品質(zhì)4。同時,和玉米、大豆相比

7、,棉花對na的耐受性更強些5,6,但是大量研究也表明,鹽漬化大幅度抑制了棉花的營養(yǎng)生長7,8。在整個生長發(fā)育周期中,在幼苗期棉花對鹽最敏感9。隨著世界人民對食物需求的增加和可耕地面積的減少,棉花種植向鹽堿地轉(zhuǎn)移。生產(chǎn)上,棉花經(jīng)常早衰,在鹽堿地上,這種情況更加嚴(yán)重。鉀缺乏抑制了根系生長10,11,而na也抑制了根系生長12,13,但是鉀缺乏時na對根系生長的作用目前尚未見報道。因此,在不同k供應(yīng)水平條件下,研究了低濃度na對棉花幼苗根系生長和根系k、ca、mg和na含量的影響。1 材料與方法1.1 材料與方法供試材料為國審棉百棉1號(河南科技學(xué)院選育)。培養(yǎng)室培養(yǎng)條件:光照時間/黑暗時間為14

8、h/10 h,光照為350 mol/(m2·s),晝/夜溫度為3033 / 2326 。挑選飽滿的種子,用9%的雙氧水消毒30 min后,取出用去離子水將種子沖洗干凈,置于裝有濕潤沙子的盆缽中萌發(fā),上面用塑料薄膜覆蓋,并打少量孔以利通氣,待子葉長出后,揭去薄膜,噴清水保持濕潤,萌發(fā)1 d后從盆缽將萌發(fā)的幼苗轉(zhuǎn)移到調(diào)整好的營養(yǎng)液中。盛放營養(yǎng)液的容器規(guī)格:長×寬×高為20 cm×13 cm×15 cm,容器的外層用鋁泊紙包裹,其上有鉆孔泡沫定植板,棉花幼苗用海綿包莖固定于泡沫板的孔洞中。待移栽后,在水培條件下培養(yǎng),每天連續(xù)通氣。營養(yǎng)液組成為:2.5

9、 mmol/l的ca(no3 )2,1 mmol/l的mgso4,0.5 mmol/l的nah2po4,2×10-4 mmol/l的cuso4,1×10-3 mmol/l的znso4,0.1mmol/l的edtafena,2×10-2 mmol/l的h3bo3,5×10-6 mmol/l的(nh4) 6mo7o24和1×10-3 mmol/l的mnso4和不同濃度的kcl和nacl。k處理設(shè)兩個水平:低鉀0.05 mmol/l和高鉀2.50 mmol/l,兩個鉀濃度下,nacl處理設(shè)3個水平:0.5 mmol/l(ck),10.5 mmol/l

10、,50.5 mmol/l。 1.2 棉花幼苗干重、根系形態(tài)、根系礦質(zhì)元素含量測定處理7 d后,選擇大小、長勢基本一致的幼苗用于棉花幼苗根干重、根系形態(tài)、礦質(zhì)元素含量的測定。將整株幼苗的根系剪下,分散置于根系掃描盤中,利用根系掃描分析儀(epson perfection 4990 photo)透掃,將圖像存為jpeg格式,用根系分析軟件(winrhizo pro 2007)自動分析根系總長、表面積、體積等。根據(jù)根系直徑,將根系分為細根(直徑0.2 mm)、中根(0.2 mm直徑0.45 mm)和粗根(直徑>0.45 mm) 14。掃描后的根系在恒溫烘箱中70 下烘干后稱重。將烘干后的棉花幼

11、苗根系樣品放入研缽中研磨,稱取約0.1 g左右研磨后的棉花幼苗根系樣品于樣品瓶中,加入10 ml鹽酸加蓋擰緊,浸泡5 h后放置于hy-2往復(fù)振蕩器上振蕩30 min,提取上清液至事先編號的離心管中。采用電荷偶感等離子體發(fā)射光譜儀(型號pe-optima 2100 dv,usa)測定溶液中mg、na、ca和k的含量。1.3 試驗設(shè)計和統(tǒng)計分析以培養(yǎng)盒為單位,1盒為1次重復(fù)。每處理設(shè)4次重復(fù),每盒8株。每個處理取樣6次重復(fù)。所有數(shù)據(jù)采用sas統(tǒng)計軟件(8.0)的snk多重比較法進行統(tǒng)計分析。2 結(jié)果與分析2.1 不同鉀供應(yīng)水平下,nacl對棉花幼苗根系生長的影響如表1所示,在低k供應(yīng)水平下,10.

12、5 mmol/l的nacl顯著增加了棉花幼苗根系干物質(zhì)量,50.5 mmol/l的nacl 進一步顯著增加了棉花幼苗根系干物質(zhì)量;在高k供應(yīng)水平下,10.5 mmol/l的nacl對棉花幼苗根系干物質(zhì)量沒有影響,而50.5 mmol/l的nacl顯著抑制了棉花幼苗根系干物質(zhì)量。如表1所示,在低k供應(yīng)水平下,nacl脅迫顯著提高了根系總長度、表面積和體積,10.5 mmol/l 和50.5 mmol/l nacl條件下的根總長度、表面積、體積間差異不顯著。在高k供應(yīng)水平下,10.5 mmol/l nacl處理的根系總長度、表面積、體積均顯著高于0.5和50.5 mmol/l nacl處理的根系總

13、長度、表面積、體積。2.2 不同鉀供應(yīng)水平下,nacl對棉花幼苗不同直徑根生長的影響如表2所示,在低k供應(yīng)水平下,nacl促進了細根和中根的根長度和根表面積,顯著促進了粗根長度而對其表面積的增加沒達到顯著水平;50.5 mmol/l nacl 相對于10.5 mmol/l nacl,顯著促進了細根長度而抑制了粗根長度,對細、中和粗根的表面積沒有顯著影響。在高k供應(yīng)水平下,nacl對細根長度無顯著影響,10.5 mmol/l nacl促進了中根和粗根的長度以及粗根的表面積。2.3 不同鉀供應(yīng)水平下,nacl對棉花幼苗根系中礦質(zhì)元素含量的影響如表3所示,在低k供應(yīng)水平下,與對照相比,10.5 mm

14、ol/l 顯著抑制了鉀的吸收和增加了na的吸收,對ca和mg吸收沒有顯著影響, 顯著降低了k/na值; 50.5 mmol/l nacl顯著抑制k、ca和mg的吸收和促進了na的吸收,顯著降低了k/na值。在高k供應(yīng)水平下,與對照相比, 10.5 mmol/l nacl對根系吸收礦質(zhì)元素ca、mg、k、na的影響不顯著,顯著降低了k/na值;50.5 mmol/l nacl顯著促進ca、mg和na的吸收而抑制了k的吸收,顯著降低了k/na值。3 討論k是植物代謝和生長所需要的大量元素15。na不僅在化學(xué)性質(zhì)和結(jié)構(gòu)方面與k相似,而且在某種程度上可以替代鉀的許多功能,如內(nèi)部滲透調(diào)節(jié)16。并且,已有

15、研究顯示,na對生長有益,可以提高產(chǎn)量17-20,甚至改善品質(zhì)21,22。但是,隨著鹽水平增加,棉花23和小麥24幼苗根系長度減少,兩項研究中使用的最低nacl濃度分別是50和100 mmol/l。此次的研究結(jié)果表明,低鉀條件下,nacl(10.5和50.5 mmol/l)促進了根系生長,顯著提高了根系干物質(zhì)量和根系總長度,根系總長度中,細根長度增加幅度最大,而高鉀條件下,僅10.5 mmol/l顯著促進了根系總長度,對根系干物質(zhì)量沒有顯著影響。這表明,鉀缺乏時,一定濃度的na可以替代鉀的功能,促進根系的生長,但不一定是內(nèi)部滲透調(diào)節(jié)功能替代,因為鉀缺乏條件下,0.5 mmol/l na時,k和

16、na含量之和為39.7 mg/g(dw),而50.5 mmol/l na時,兩者含量之和為36.1 mg/g(dw),兩者之間無明顯差異。na處理降低了k/na值,降低了缺鉀條件下ca和mg的含量。同樣,其他研究也表明,na增加降低了棉花根系和莖葉中k和ca的含量25。k和na選擇性弱化和na誘導(dǎo)的k缺乏是鹽脅迫條件下生長抑制和產(chǎn)量降低的主要原因26,也是隨著鹽水平增加k/na值降低的原因。na削弱ca吸收的原因或許是因為na置換了細胞膜中的ca和改變了膜的完整性27。在大多數(shù)植物中,離子積累具有毒性作用,打破了離子平衡28,離子毒性導(dǎo)致細胞膜不可逆轉(zhuǎn)的損害29。k充分條件下,na增加卻增加了

17、根系中ca和mg的含量,或許是因為na抑制了k的吸收,因為k是ca和mg吸收的強烈抑制劑19,30。參考文獻:1 arnon d i, stout p r. the essentiality of certain elements in minute quantity for plants with special reference to copper j. plant physiology, 1939, 14(2): 371-375. 2 epstein e. mineral metabolisma. bonner j and varner j e. plant biochemistryc

18、. new york:academic press, 1965.3 subbarao g v, ito o, berry w l, et al. sodium-a functional plant nutrientj. critical reviews in plant sciences, 2003, 22(5): 391-416.4 cassman k g, kerby t a, roberts b a, et al. differential response of two cotton cultivars to fertilizer and soil potassium j. agron

19、omy journal, 1989, 81(6): 870-876.5 pearson g a. tolerance of crops to exchangeable sodium j. agriculture information bulletin, 1960, 216: 1-4.6 maas e v. crop salt tolerancea.tanji k k . agricultural assessment and managementc. new york :american society for civil engineers, 1990.7 khan a n, quresh

20、i r h, ahmad n. selection of cotton cultivars for salinity tolerance at seedling stagej. sarhad journal of agriculture, 1995, 1: 153-159.8 葉武威, 劉金定, 樊寶相, 等. 鹽分(nacl)對陸地棉纖維性狀的影響 j. 中國棉花, 1997, 24: 17-18.9 abui-naas a a, omran m s. salt tolerance of seventeen cotton cultivars during germination and ea

21、rly seedling development j. z ack pflanzenbau, 1974, 140: 229-236.10 armengaud p, breitling r, amtmann a. the potassium-dependent transcriptome of arabidopsis reveals a prominent role of jasmonic acid in nutrient signalingj. plant physiol, 2004, 136(1): 2556-2576.11 zhang z y, yang f q, li b, et al.

22、 coronatine-induced lateral-root formation in cotton (gossypium hirsutum) seedlings under potassium-sufficient and -deficient conditions in relation to auxinj. journal of plant nutrition and soil science, 2009, 172: 435-444.12 cramer g r, l?魧uchli a, epstein e. effects of nacl and cacl2 on ion activ

23、ities in complex nutrient solutions and root growth of cottonj. plant physiology, 1986, 81(3): 792-797.13 mai w x, tian c y, lo l. localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil j. jour

24、nal of arid land, 2014, 6(3): 361-370.14 張志勇, 王清連, 李召虎, 等. 缺鉀對棉花幼苗根系生長的影響及其生理機制 j. 作物學(xué)報, 2009, 35(4): 718-723.15 hsiao t c, lauchli a. role of potassium in plant-water relationsa. advances in plant nutrition.vol 2c. new york:praeger scientific,1986.281-312.16 glenn e, pfister r, brown j j, et al. na

25、 and k accumulation and salt tolerance of atriplex canescens (chenopodiaceae) genotypesj. american journal of botany, 1996: 997-1005. 17 galeev r r. application of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficia

26、l element for crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. london:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soi

27、l science & plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consumption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j

28、 c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf tissue j. grass and forage science, 1999, 54(4): 297-311.23 chachar q i, solangi a g, verhoef a. influence of sodium chloride on seed germination and seedling root growth of cotton (gossypium hirsutum l.)j. pakistan jo

29、urnal of botany, 2008, 40(1): 183-197.24 almansouri m, kinet j m, lutts s. effect of salt and osmotic stresses on germination in durum wheat (triticum durum desf.) j. plant and soil, 2001, 231(2): 243-254.25 kent l m, l?魧uchli a. germination and seedling growth of cotton: salinity-calcium interactio

30、ns j. plant,cell & environment, 1985, 8(2): 155-159.26 grattan s r, grieve c m. mineral nutrient acquisition and response by plants grown in saline environmentsa. pessarakli m .handbook of plant and crop stressc. new york: marcel dekker, 1999.203-229.27 lynch j, cramer g r, lauchli a. salinity r

31、educes membrane-associated calcium in corn root protoplasts j. plant physiology, 1987, 83: 390-394.28 hasegawa p m, bressan r a, zhu j k, et al. plant cellular and molecular responses to high salinityj. annual review of plant biology, 2000, 51: 463-499.29 serrano r, gaxiola r. microbial models and s

32、alt stress tolerance in plants j. critical reviews in plant sciences, 1994, 13(2): 121-138.30 garcia m, daverede c, gallego p, et al. effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponicallyj. journal of plant nutrition, 1999, 22(3): 417-425. 17 galeev r r. applica

33、tion of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficial element for crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. l

34、ondon:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soil science & plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consu

35、mption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf tissue j. grass and forage science, 1999, 54(4): 297-311.23 chachar q i, s

36、olangi a g, verhoef a. influence of sodium chloride on seed germination and seedling root growth of cotton (gossypium hirsutum l.)j. pakistan journal of botany, 2008, 40(1): 183-197.24 almansouri m, kinet j m, lutts s. effect of salt and osmotic stresses on germination in durum wheat (triticum durum

37、 desf.) j. plant and soil, 2001, 231(2): 243-254.25 kent l m, l?魧uchli a. germination and seedling growth of cotton: salinity-calcium interactions j. plant,cell & environment, 1985, 8(2): 155-159.26 grattan s r, grieve c m. mineral nutrient acquisition and response by plants grown in saline envi

38、ronmentsa. pessarakli m .handbook of plant and crop stressc. new york: marcel dekker, 1999.203-229.27 lynch j, cramer g r, lauchli a. salinity reduces membrane-associated calcium in corn root protoplasts j. plant physiology, 1987, 83: 390-394.28 hasegawa p m, bressan r a, zhu j k, et al. plant cellu

39、lar and molecular responses to high salinityj. annual review of plant biology, 2000, 51: 463-499.29 serrano r, gaxiola r. microbial models and salt stress tolerance in plants j. critical reviews in plant sciences, 1994, 13(2): 121-138.30 garcia m, daverede c, gallego p, et al. effect of various pota

40、ssium-cacium ratios on cation nutrition of grape grown hydroponicallyj. journal of plant nutrition, 1999, 22(3): 417-425. 17 galeev r r. application of sodium humate to potatoesj. kartofeli ovoshchi, 1990 (2): 12-13.18 takahashi e, maejima k. comparative research on sodium as a beneficial element fo

41、r crop plantsj. memoirs of the faculty of agriculture of kinki university, 1998,31:57-72.19 marschner h. mineral nutrition of higher plants m. london:academic press, 1995.20 haneklaus s, knudsen l, schnug e. relationship between potassium and sodium in sugar beet j. communications in soil science &a

42、mp; plant analysis, 1998, 29(11-14): 1793-1798.21 von boberfeld w o, schlosser m, laser h. effect of na amounts on forage quality and feed consumption on lolium perenne depending on fertilizer and nutrient ratio j. agribiological research, 1999, 52(3-4): 261-270.22 chiy p c, phillips c j c. sodium fertilizer application to pasture. 8. turnover and defoliation of leaf t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論