高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇2_第1頁(yè)
高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇2_第2頁(yè)
高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇2_第3頁(yè)
高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇2_第4頁(yè)
高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇2_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高一必修一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新5篇 空間直角坐標(biāo)系定義: 過定點(diǎn)o,作三條互相垂直的數(shù)軸,它們都以o為原點(diǎn)且一般具有相同的長(zhǎng)度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統(tǒng)稱坐標(biāo)軸、通常把x軸和y軸配置在水平面上,而z軸那么是鉛垂線;它們的正方向要符合右手規(guī)那么,即以右手握住z軸,當(dāng)右手的四指從正向x軸以/2角度轉(zhuǎn)向正向y軸時(shí),大拇指的指向就是z軸的正向,這樣的三條坐標(biāo)軸就組成了一個(gè)空間直角坐標(biāo)系,點(diǎn)o叫做坐標(biāo)原點(diǎn)。 1、右手直角坐標(biāo)系 右手直角坐標(biāo)系的建立規(guī)那么:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指; 點(diǎn)的坐標(biāo)p(x,y,z)作點(diǎn)的方法與步驟(路徑法):

2、 沿x軸正方向(x>0時(shí))或負(fù)方向(x<0時(shí))移動(dòng)|x|個(gè)單位,再沿y軸正方向(y>0時(shí))或負(fù)方向(y<0時(shí))移動(dòng)|y|個(gè)單位,最后沿x軸正方向(z>0時(shí))或負(fù)方向(z<> 點(diǎn)的位置求坐標(biāo)的方法: 過p作三個(gè)平面分別與x軸、y軸、z軸垂直于a,b,c,點(diǎn)a,b,c在x軸、y軸、z軸的坐標(biāo)分別是a,b,c那么(a,b,c)就是點(diǎn)p的坐標(biāo)。 2、在x軸上的點(diǎn)分別可以表示為(a,0,0),(0,b,0),(0,0,c)。 在坐標(biāo)平面xoy,xoz,yoz內(nèi)的點(diǎn)分別可以表示為(a,b,0),(a,0,c),(0,b,c)。 3、點(diǎn)p(a,b,c)關(guān)于x軸的對(duì)稱

3、點(diǎn)的坐標(biāo)為(a,-b,-c); 點(diǎn)p(a,b,c)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為(-a,b,-c); 點(diǎn)p(a,b,c)關(guān)于z軸的對(duì)稱點(diǎn)的坐標(biāo)為(-a,-b,c); 點(diǎn)p(a,b,c)關(guān)于坐標(biāo)平面xoy的對(duì)稱點(diǎn)為(a,b,-c); 點(diǎn)p(a,b,c)關(guān)于坐標(biāo)平面xoz的對(duì)稱點(diǎn)為(a,-b,c); 點(diǎn)p(a,b,c)關(guān)于坐標(biāo)平面yoz的對(duì)稱點(diǎn)為(-a,b,c); 點(diǎn)p(a,b,c)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-a,-b,-c)。 4、空間兩點(diǎn)p(x1,y1,z1),q(x2,y2,z2),那么線段的中點(diǎn)坐標(biāo)為 5、空間兩點(diǎn)間的距離公式 空間兩點(diǎn)p(x1,y1,z1),q(x2,y2,z2),那么兩點(diǎn)的距離為特殊

4、點(diǎn)a(x,y,z)到原點(diǎn)o的距離為 6、以c(x0,y0,z0)為球心,r為半徑的球面方程為 特殊地,以原點(diǎn)為球心,r為半徑的球面方程為x2+y2+z2=r2 一、集合有關(guān)概念 1.集合的含義 2.集合的中元素的三個(gè)特性: (1)元素確實(shí)定性如:世界上的山 (2)元素的互異性如:由happy的字母組成的集合h,a,p,y (3)元素的無序性:如:a,b,c和a,c,b是表示同一個(gè)集合 3.集合的表示:如:我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:a=我校的籃球隊(duì)員,b=1,2,3,4,5 (2)集合的表示方法:列舉法與描述法。 注意:常用數(shù)集及其記法:xkb1.

5、com 非負(fù)整數(shù)集(即自然數(shù)集)記作:n 正整數(shù)集:n或n+ 整數(shù)集:z 有理數(shù)集:q 實(shí)數(shù)集:r 1)列舉法:a,b,c 2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合x?r|x-3>2,x|x-3>2 3)語(yǔ)言描述法:例:不是直角三角形的三角形 4)venn圖: 4、集合的分類: (1)有限集含有有限個(gè)元素的集合 (2)無限集含有無限個(gè)元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合間的根本關(guān)系 1.“包含”關(guān)系子集 注意:有兩種可能(1)a是b的一局部,;(2)a與b是同一集合。 反之:集合a不包含于集合b,或集合b不包含集合a,記作a

6、b或ba 2.“相等”關(guān)系:a=b(55,且55,那么5=5) 實(shí)例:設(shè)a=x|x2-1=0b=-1,1“元素相同那么兩集合相等” 即:任何一個(gè)集合是它本身的子集。aía 真子集:如果aíb,且a1b那就說集合a是集合b的真子集,記作ab(或ba) 如果aíb,bíc,那么aíc 如果aíb同時(shí)bía那么a=b 3.不含任何元素的集合叫做空集,記為 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集個(gè)數(shù): 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集 三

7、、集合的運(yùn)算 運(yùn)算類型交集并集補(bǔ)集 定義由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作ab(讀作a交b),即ab=x|xa,且xb. 由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:ab(讀作a并b),即ab=x|xa,或xb). 1.“包含”關(guān)系子集 注意:有兩種可能(1)a是b的一局部,;(2)a與b是同一集合。 反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba 2.“相等”關(guān)系:a=b(55,且55,那么5=5) 實(shí)例:設(shè)a=x|x2-1=0b=-1,1“元素相同那么兩集合相等” 即:任何一個(gè)集合是它本身的子集。a?a 真子集:如果

8、a?b,且a?b那就說集合a是集合b的真子集,記作ab(或ba) 如果a?b,b?c,那么a?c 如果a?b同時(shí)b?a那么a=b 3.不含任何元素的集合叫做空集,記為 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 ?有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設(shè)函數(shù)y=f(x)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間d稱為y=f(x)的單調(diào)減區(qū)間. 注意:函數(shù)的單調(diào)性是函

9、數(shù)的局部性質(zhì); (2)圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的. (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (a)定義法: (1)任取x1,x2d,且x1 (2)作差f(x1)-f(x2);或者做商 (3)變形(通常是因式分解和配方); (4)定號(hào)(即判斷差f(x1)-f(x2)的正負(fù)); (5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間d上的單調(diào)性). (b)圖象法(從圖象上看升降) (c)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)fg(x)的單調(diào)性與構(gòu)成它的函數(shù)u=g(

10、x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8.函數(shù)的奇偶性(整體性質(zhì)) (1)偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2)奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 9.利用定義判斷函數(shù)奇偶性的步驟: 1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱; 2確定f(-x

11、)與f(x)的關(guān)系; 3作出相應(yīng)結(jié)論:假設(shè)f(-x)=f(x)或f(-x)-f(x)=0,那么f(x)是偶函數(shù);假設(shè)f(-x)=-f(x)或f(-x)+f(x)=0,那么f(x)是奇函數(shù). 注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,假設(shè)不對(duì)稱那么函數(shù)是非奇非偶函數(shù).假設(shè)對(duì)稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定. 10、函數(shù)的解析表達(dá)式 (1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法那么

12、,二是要求出函數(shù)的定義域. (2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法 11.函數(shù)(小)值 1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值 2利用圖象求函數(shù)的(小)值 3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值: 如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞增,在區(qū)間b,c上單調(diào)遞減那么函數(shù)y=f(x)在x=b處有值f(b); 如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞減,在區(qū)間b,c上單調(diào)遞增那么函數(shù)y=f(x)在x=b處有最小值f(b); 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)閞. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 【函數(shù)的應(yīng)用】 1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即: 方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: 求函數(shù)的零點(diǎn): 1(代數(shù)法)求方程的實(shí)數(shù)根; 2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論