版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、優(yōu)秀教案歡迎下載中考數(shù)學(xué)專題圓的位置關(guān)系第一部分真題精講【例 1】已知:如圖,ab 為 o 的直徑, o 過 ac 的中點(diǎn) d,debc 于點(diǎn) e (1)求證: de 為 o 的切線;(2)若 de=2, tanc=12,求 o 的直徑oedcba【思路分析】本題和大興的那道圓題如出一轍,只不過這兩個(gè)題的三角形一個(gè)是躺著一個(gè)是立著,讓人懷疑他們是不是串通好了近年來此類問題特別愛將中點(diǎn)問題放進(jìn)去一并考察,考生一定要對(duì)中點(diǎn)以及中位線所引發(fā)的平行等關(guān)系非常敏感,尤其不要忘記圓心也是直徑的中點(diǎn)這一性質(zhì)。對(duì)于此題來說,自然連接od,在 abc 中od 就是中位線, 平行于 bc。所以利用垂直傳遞關(guān)系可證
2、odde。至于第二問則重點(diǎn)考察直徑所對(duì)圓周角是90這一知識(shí)點(diǎn)。利用垂直平分關(guān)系得出abc 是等腰三角形,從而將求ab 轉(zhuǎn)化為求bd ,從而將圓問題轉(zhuǎn)化成解直角三角形的問題就可以輕松得解?!窘馕觥浚?1)證明:聯(lián)結(jié)od d 為 ac中點(diǎn), o 為 ab中點(diǎn),oedcba od 為 abc的中位線od bc debc , dec=90 . ode= dec=90 . od de于點(diǎn) d. de 為 o的切線(2)解:聯(lián)結(jié)db ab為 o的直徑, adb=90 db ac cdb=90 . d 為 ac中點(diǎn),ab=ac 在 rtdec中, de=2 , tanc=12,ec=4tandec. (三角
3、函數(shù)的意義要記牢)由勾股定理得:dc=2 5 .在 rtdcb 中, bd=tan5dcc由勾股定理得: bc=5. ab=bc=5. o的直徑為 5.【例 2】 已知:如圖,o為abc 的外接圓, bc 為 o的直徑,作射線bf, 使得ba平分cbf , 過點(diǎn)a作adbf于點(diǎn)d.(1)求證:da為 o的切線;(2)若1bd,1tan2bad,求 o的半徑 . 優(yōu)秀教案歡迎下載ofdcba3421ofdcba【思路分析】本題是一道典型的用角來證切線的題目。題目中除垂直關(guān)系給定以外,就只給了一條ba 平分 cbf??吹竭@種條件,就需要大家意識(shí)到應(yīng)該通過角度來證平行。用角度來證平行無外乎也就內(nèi)錯(cuò)角
4、同位角相等,同旁內(nèi)角互補(bǔ)這么幾種。本題中,連oa 之后發(fā)現(xiàn) abd= abc ,而 oab 構(gòu)成一個(gè)等腰三角形從而abo=bao ,自然想到傳遞這幾個(gè)角之間的關(guān)系,從而得證。第二問依然是要用角的傳遞,將已知角bad通過等量關(guān)系放在 abc 中,從而達(dá)到計(jì)算直徑或半徑的目的?!窘馕觥孔C明:連接ao .aobo ,23. bacbf平分,12. 31 . db ao . (得分點(diǎn),一定不能忘記用內(nèi)錯(cuò)角相等來證平行)addb,90bda.90dao. ao 是 o 半徑,da為 o 的切線 . (2)addb,1bd,1tan2bad,2ad.由勾股定理,得5ab. 5sin45.(通過三角函數(shù)的轉(zhuǎn)
5、換來擴(kuò)大已知條件)bc 是 o 直徑,90bac.290c. 又4190 , 21, 4c . (這一步也可以用三角形相似直接推出bd/ab=ab/ac=sin bad)在 rt abc 中,sinabbcc=sin4ab=5. o的半徑為52. 【例 3】已知:如圖,點(diǎn)d是 o 的直徑 ca 延長(zhǎng)線上一點(diǎn),點(diǎn)b在 o 上,且.oaabad(1)求證:bd是 o 的切線;(2)若點(diǎn)e是劣弧 bc 上一點(diǎn),ae與 bc 相交于點(diǎn)f,且8be,5tan2bfa,求 o 的半徑長(zhǎng) .【思路分析】此題條件中有oa=ab=od ,聰明的同學(xué)瞬間就能看出來ba 其實(shí)就是三角形obd 中斜邊 od上的中線。
6、那么根據(jù)直角三角形斜邊中線等于斜邊一半這一定理的逆定理,馬上可以反推出obd=90 ,于是切線問題迎刃而解。事實(shí)上如果看不出來,那么連接ob 以后像例2 那樣用角度傳遞也是可以做的。本題第二問則稍有難度,額外考察了有關(guān)圓周角的若干性質(zhì)。利用圓周角相等去證明三角形相似,從而將未知條件用比例關(guān)系與已知條件聯(lián)系起來。近年來中考范圍壓縮,圓冪定理等綱外內(nèi)容已經(jīng)基本不做要求,所以更多的都是利用相似三角形中借助比例來計(jì)算,希望大家認(rèn)真掌握。【解析】fedcbao優(yōu)秀教案歡迎下載(1)證明:連接ob .,oaab oaob , oaabob .abo 是等邊三角形 .160bao.abad,230d. 12
7、90 . dbbo .(不用斜邊中線逆定理的話就這樣解,麻煩一點(diǎn)而已)又點(diǎn)b在 o 上,db是 o 的切線.(2)解: ca 是 o 的直徑,90abc.在 rtabf中,5tan2abbfabf , 設(shè)5 ,abx則2bfx,223afabbfx . 23bfaf . (設(shè)元的思想很重要),34ce, bfeafc . 23bebfacaf . 8be,12ac . 6ao. 5 分【例4】如圖,等腰三角形abc 中,6acbc,8ab以 bc 為直徑作 o 交ab于點(diǎn)d,交 ac 于點(diǎn) g ,dfac ,垂足為f,交 cb 的延長(zhǎng)線于點(diǎn)e(1)求證:直線ef是 o的切線;(2)求 sine
8、 的值dfgcobea【思路分析】本題和前面略有不同的地方就是通過線段的具體長(zhǎng)度來計(jì)算和證明。欲證ef 是切線,則需證od 垂直于 ef,但是本題中并未給od 和其他線角之間的關(guān)系,所以就需要多做一條輔助線連接cd,利用直徑的圓周角是 90,并且 abc 是以 ac,cb 為腰的等腰三角形,從而得出d 是中點(diǎn)。 成功轉(zhuǎn)化為前面的中點(diǎn)問題,繼而求解。第二問利用第一問的結(jié)果,轉(zhuǎn)移已知角度,借助勾股定理,在相似的rt 三角形當(dāng)中構(gòu)造代數(shù)關(guān)系,通過解方程的形式求解,也考察了考生對(duì)于解三角形的功夫?!窘馕觥?31fedcba4o優(yōu)秀教案歡迎下載dfgcobea(1)證明:如圖,連結(jié)cd ,則90bdc
9、cdab acbc ,adbdd是ab的中點(diǎn) o 是 bc 的中點(diǎn), doacefac于 f efdo ef是 o的切線( 2 ) 連結(jié) bg , bc 是直徑 , 90bgccfe (直徑的圓周角都是90)bgef sinfccgeecbc設(shè) cgx,則6agx 在 rtbga中,222bgbccg在 rtbgc中,222bgabag (這一步至關(guān)重要,利用兩相鄰rt的臨邊構(gòu)建等式,事實(shí)上也可以直接用直角三角形斜邊高分比例的方法)2222686xx解得23x即23cg在 rtbgc中213sin69cgebc【例 5】如圖,平行四邊形abcd 中,以 a 為圓心, ab 為半徑的圓交ad 于
10、 f,交 bc 于 g,延長(zhǎng) ba 交圓于 e. (1)若 ed 與 a 相切,試判斷gd 與 a 的位置關(guān)系,并證明你的結(jié)論;(2)在( 1)的條件不變的情況下,若gccd5,求 ad 的長(zhǎng) . gfedcba【思路分析】本題雖然是圓和平行四邊形的位置關(guān)系問題,但是依然考察的是如何將所有條件放在最基本的三角形中求解的能力。判斷出dg 與圓相切不難,難點(diǎn)在于如何證明。事實(shí)上,除本題以外,門頭溝,石景山和宣武都考察了圓外一點(diǎn)引兩條切線的證明。這類題目最重要是利用圓半徑相等以及兩個(gè)圓心角相等來證明三角形相似。第二問則不難,重點(diǎn)在于如何利用角度的倍分關(guān)系來判斷直角三角形中的特殊角度,從而求解。優(yōu)秀教
11、案歡迎下載【解析】(1)結(jié)論: gd 與o 相切654321gfedcba證明:連接ag點(diǎn) g 、e在圓上, agae四邊形abcd 是平行四邊形, adbc123b, abag3b12(做多了就會(huì)發(fā)現(xiàn),基本此類問題都是要找這一對(duì)角,所以考生要善于把握已知條件往這個(gè)上面引)在aed和agd12aeagadadaedagdaedagded與a相切90aed90agd agdg gd 與a相切(2)5gccd,四邊形abcd 是平行四邊形 abdc ,45 ,5abag adbc461562b226 (很多同學(xué)覺得題中沒有給出特殊角度,于是無從下手,其實(shí)用倍分關(guān)系放在rt 三角形中就產(chǎn)生了30和
12、60的特殊角)63010ad. 【總結(jié)】經(jīng)過以上五道一模真題,我們可以得出這類題型的一般解題思路。要證相切,做輔助線連接圓心與切點(diǎn)自不必說,接下來就要考慮如何將半徑證明為是圓心到切線的距離,即“連半徑,證垂直”。近年來中考基本只要求了這一種證明切線的思路,但是事實(shí)上證明切線有三種方式。為以防遇到,還是希望考生能有所了解。第一種就是課本上所講的先連半徑,再證垂直。這樣的前提是題目中所給條件已經(jīng)暗含了半徑在其中。例如圓外接三角形,或者圓與線段交點(diǎn)這樣的。把握好各種圓的性質(zhì)關(guān)系就可以了。優(yōu)秀教案歡迎下載第二種是在題目沒有給出交點(diǎn)狀況的情況下,不能貿(mào)然連接,于是可以先做垂線,然后通過證明垂線等于半徑即
13、可,就是所謂的“先證垂直后證半徑”。例如大家看這樣一道題,如圖 abc中, ab=ac ,點(diǎn) o是 bc的中點(diǎn),與 ab切于點(diǎn) d,求證:與 ac也相切。該題中圓0 與 ac 是否有公共點(diǎn)是未知的,所以只能通過o 做 ac 的垂線,然后證明這個(gè)距離剛好就是圓半徑。如果考生想當(dāng)然認(rèn)為有一個(gè)交點(diǎn),然后直接連ac 與圓交點(diǎn)這樣證明,就誤入歧途了。第三種是比較棘手的一種,一方面題目中并未給出半徑,也未給出垂直關(guān)系,所以屬于半徑和垂直都要證明的題型。例如看下面一道題:如圖,中, ab=ac ,=,o、d 將 bc 三等分,以ob 為圓心畫,求證:與 ac 相切。本題中并未說明一定過 a 點(diǎn),所以需要證明
14、a 是切點(diǎn),同時(shí)還要證明o 到 ac 垂線的垂足和a 是重合的,這樣一來就非常麻煩。但是換個(gè)角度想,如果連接ao 之后再證明ao=ob ,ao ac,那么就非常嚴(yán)密了。(提示:做垂線,那么垂足同時(shí)也是中點(diǎn),通過數(shù)量關(guān)系將ao ,bo 都用 ab 表示出來即可證明相等,而aoc 中利用直角三角形斜邊中線長(zhǎng)是斜邊一半的逆定理可以證出直角。)至于本類題型中第二問的計(jì)算就比較簡(jiǎn)單了,把握好圓周角,圓心角,以及可能出現(xiàn)的弦切角所構(gòu)成的線段,角關(guān)系,同時(shí)將條件放在同一個(gè)rt當(dāng)中就可以非常方便的求解??傊祟愵}目難度不會(huì)太大,所以需要大家做題速度快,準(zhǔn)確率高,為后面的代幾綜合體留出空間。優(yōu)秀教案歡迎下載第
15、二部分發(fā)散思考【思考 1】如圖,已知ab 為 o 的弦, c 為 o 上一點(diǎn), c=bad,且 bdab 于 b. (1)求證: ad 是 o 的切線;(2)若 o 的半徑為3,ab=4,求 ad 的長(zhǎng) . 【思路分析】 此題為去年海淀一模題,雖然較為簡(jiǎn)單,但是統(tǒng)計(jì)下來得分率卻很低. 因?yàn)轭}目中沒有給出有關(guān)圓心的任何線段,所以就需要考生自己去構(gòu)造。同一段弧的圓周角相等這一性質(zhì)是非常重要的,延長(zhǎng)db 就會(huì)得到一個(gè)和 c 一樣的圓周角,利用角度關(guān)系,就很容易證明了。第二問考解三角形的計(jì)算問題,利用相等的角建立相等的比例關(guān)系,從而求解。(解法見后)【思考 2】已知:如圖,ab 為 o 的弦,過點(diǎn)o
16、作 ab 的平行線,交o 于點(diǎn) c,直線 oc 上一點(diǎn) d 滿足 d=acb.(1)判斷直線bd 與 o 的位置關(guān)系,并證明你的結(jié)論;(2)若 o 的半徑等于4,4tan3acb,求 cd 的長(zhǎng) .【思路分析】 本題也是非常典型的通過角度變換來證明90的題目。重點(diǎn)在于如何利用d=acb 這個(gè)條件,去將他們放在rt 三角形中找出相等,互余等關(guān)系。尤其是將obd 拆分成兩個(gè)角去證明和為90。(解法見后)【思考 3】已知:如圖,在abc 中, ab=ac,ae是角平分線,bm 平分 abc 交 ae 于點(diǎn) m,經(jīng)過 b,m 兩點(diǎn)的o 交 bc 于點(diǎn) g,交 ab 于點(diǎn) f,fb 恰為 o 的直徑 .
17、 (1)求證: ae 與 o 相切;(2)當(dāng) bc=4,cosc=13時(shí),求 o 的半徑 . 【思路分析】這是一道去年北京中考的原題,有些同學(xué)可能已經(jīng)做過了。主要考點(diǎn)還是切線判定,等腰三角形性質(zhì)以及解直角三角形,也不會(huì)很難。放這里的原因是讓大家感受一下中考題也無非就是如此出法,和我們前面看到的那些題是一個(gè)意思。abcdo優(yōu)秀教案歡迎下載【思考 4】如圖,等腰abc 中, ac=bc , o 為 abc 的外接圓,d 為bc上一點(diǎn),cead 于 e. 求證: ae= bd +de 【思路分析 】 前面的題目大多是有關(guān)切線問題,但是未必所有的圓問題都和切線有關(guān),去年西城區(qū)這道模擬題就是無切線問題的
18、代表。此題的關(guān)鍵在于如何在圖形中找到和bd 相等的量來達(dá)到轉(zhuǎn)化的目的。如果圖形中所有線段現(xiàn)成的沒有,那么就需要自己去截一段,然后去找相似或者全等三角形中的線段關(guān)系?!舅伎?5】如圖,已知o 是 abc 的外接圓, ab 是 o 的直徑, d 是 ab 延長(zhǎng)線的一點(diǎn), aecd 交 dc 的延長(zhǎng)線于e,cfab 于 f,且 cecf(1)求證: de 是 o 的切線;(2)若 ab 6,bd3,求 ae 和 bc 的長(zhǎng)【思路分析】又是一道非常典型的用角證平行的題目。題目中雖未給出ac 評(píng)分角ead 這樣的條件,但是通過給定 ce=cf,加上有一個(gè)公共邊,那么很容易發(fā)現(xiàn)eac 和 caf 是全等的
19、。于是問題迎刃而解。第二問中依然要注意找到已知線段的等量線段,并且利用和,差等關(guān)系去轉(zhuǎn)化。第三部分思考題解析【思考 1 解析】1)證明 : 如圖 , 連接 ao 并延長(zhǎng)交 o 于點(diǎn) e, 連接 be, 則 abe=90. eab+e=90. e = c, c=bad, eab+bad =90. ad 是 o 的切線 . (2)解:由( 1)可知 abe=90. ae=2ao=6, ab=4, 5222abaebe. e= c=bad, bdab, .coscosebad.aebeadab.6524ad即5512ad. 【思考 2 解析】解: (1)直線 bd 與 o 相切證明:如圖3,連結(jié) ob- ocb=cbd +d , 1=d, 2=cbd aboc ,eabcdo321cdoabefaobcd優(yōu)秀教案歡迎下載 2=a a=cbd ob=oc ,2 3180boc,2boca,390a390cbd obd=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家裝知識(shí)講座》課件
- 《癲癇本科》課件
- 《家族式增員》課件
- 單位管理制度合并選集【人員管理篇】
- 單位管理制度范例選集人事管理篇十篇
- 《投資經(jīng)濟(jì)學(xué)》課程教學(xué)大綱
- 《現(xiàn)代經(jīng)濟(jì)學(xué)》課程教學(xué)大綱1
- 《小學(xué)分?jǐn)?shù)教學(xué)》課件
- 《電子元件基礎(chǔ)知識(shí)》課件
- 《企業(yè)環(huán)保管理》課件
- 流行病學(xué)知識(shí)考核試題題庫(kù)與答案
- DB11-T212-2017園林綠化工程施工及驗(yàn)收規(guī)范
- 小學(xué)數(shù)學(xué)自制教具學(xué)具的研究及探討
- 廣東省幼兒園一日活動(dòng)指引(試行)
- 光學(xué)材料-光學(xué)加工流程
- 奔馳卡車產(chǎn)品分析(課堂PPT)
- 反循環(huán)鉆孔灌注樁施工方案
- 新能源小客車購(gòu)車充電條件確認(rèn)書
- 發(fā)明專利專利答辯模板
- 市政府副市長(zhǎng)年道路春運(yùn)工作會(huì)議講話稿
- 鑄鐵鑲銅閘門
評(píng)論
0/150
提交評(píng)論