




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、221. 二次根式(1) 教學(xué)內(nèi)容 二次根式的概念及其運(yùn)用 教學(xué)目標(biāo) 理解二次根式的概念,并利用(a0)的意義解答具體題目 提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):形如(a0)的式子叫做二次根式的概念; 2難點(diǎn)與關(guān)鍵:利用“(a0)”解決具體問題 教學(xué)過程 回顧當(dāng)a是正數(shù)時,表示a的算術(shù)平方根,即正數(shù)a的正的平方根當(dāng)a是零時,等于0,它表示零的平方根,也叫做零的算術(shù)平方根當(dāng)a是負(fù)數(shù)時,沒有意義概括(a0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說,(a0)是一個非負(fù)數(shù),它的平方等于a即有: (1)0(a0);(2)=a(a0)形如(a0)的式子叫做二次根式注意在二次根
2、式中,字母a必須滿足a0,即被開方數(shù)必須是非負(fù)數(shù)例x是怎樣的實(shí)數(shù)時,二次根式有意義?分析要使二次根式有意義,必須且只須被開方數(shù)是非負(fù)數(shù)解被開方數(shù)x-10,即x1所以,當(dāng)x1時,二次根式有意義思考等于什么?我們不妨取a的一些值,如2,-2,3,-3,分別計算對應(yīng)的a2的值,看看有什么規(guī)律: 概括:當(dāng)a0時,; 當(dāng)a0時,這是二次根式的又一重要性質(zhì)如果二次根式的被開方數(shù)是一個完全平方,運(yùn)用這個性質(zhì),可以將它“開方”出來,從而達(dá)到化簡的目的例如: =2x(x0); 練習(xí) 1.x取什么實(shí)數(shù)時,下列各式有意義.(1); (2);(3); (4) 拓展 例當(dāng)x是多少時,+在實(shí)數(shù)范圍內(nèi)有意義? 分析:要使+
3、在實(shí)數(shù)范圍內(nèi)有意義,必須同時滿足中的0和中的x+10 解:依題意,得 由得:x- 由得:x-1 當(dāng)x-且x-1時,+在實(shí)數(shù)范圍內(nèi)有意義例(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 歸納小結(jié)(學(xué)生活動,老師點(diǎn)評) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號 2要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù) 布置作業(yè) 1教材P41.222.1 二次根式(2) 教學(xué)內(nèi)容 1(a0)是一個非負(fù)數(shù); 2()2=a(a0) 教學(xué)目標(biāo) 理解(a0)是一個非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計算和化簡 通過復(fù)習(xí)二次根式的
4、概念,用邏輯推理的方法推出(a0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):(a0)是一個非負(fù)數(shù);()2=a(a0)及其運(yùn)用2難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)口答 1什么叫二次根式? 2當(dāng)a0時,叫什么?當(dāng)a<0時,有意義嗎? 老師點(diǎn)評(略) 二、探究新知 議一議:(學(xué)生分組討論,提問解答) (a0)是一個什么數(shù)呢? 老師點(diǎn)評:根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出 (a0)是一個非負(fù)數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:(
5、)2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老師點(diǎn)評:是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個平方等于4的非負(fù)數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2 = a(a 0) 例1 計算 1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2= 三、鞏固練習(xí) 計算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、應(yīng)用拓展 例2 計算1()2(x0)
6、 2()2 3()2 4()2分析:(1)因為x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4題都可以運(yùn)用()2=a(a0)的重要結(jié)論解題 解:(1)因為x0,所以x+1>0,()2=x+1 (2)a20,()2=a2(3)a2+2a+1=(a+1)2 , 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 , 又(2x-3)204x2-12x+90,()2
7、=4x2-12x+9例3在實(shí)數(shù)范圍內(nèi)分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3五、歸納小結(jié)本節(jié)課應(yīng)掌握: 1(a0)是一個非負(fù)數(shù); 2()2=a(a0);反之:a=()2(a0) 六、布置作業(yè) 1教材P4.3.4 22.1 二次根式(3) 教學(xué)內(nèi)容 a(a0) 教學(xué)目標(biāo) 理解=a(a0)并利用它進(jìn)行計算和化簡 通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個結(jié)論解決具體問題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):a(a0) 2難點(diǎn):探究結(jié)論 3關(guān)鍵:講清a0時,a才成立 教學(xué)過程 一、復(fù)習(xí)引入 老師口述并板收上兩節(jié)課的重要內(nèi)容; 1形如(a0)的式子叫做二次根式; 2(a0)是一個非
8、負(fù)數(shù); 3()2a(a0) 那么,我們猜想當(dāng)a0時,=a是否也成立呢?下面我們就來探究這個問題 二、探究新知 (學(xué)生活動)填空: =_;=_;=_; =_;=_;=_ (老師點(diǎn)評):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化簡 (1) (2) (3) (4)分析:因為(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運(yùn)用=a(a0)去化簡解:(1)=3 (2)=4 (3)=5 (4)=3 三、鞏固練習(xí) 教材P4.3.4 四、應(yīng)用拓展 例2 填空:當(dāng)a0時,=_;當(dāng)a<0時,=_,
9、并根據(jù)這一性質(zhì)回答下列問題(1)若=a,則a可以是什么數(shù)? (2)若=-a,則a可以是什么數(shù)? (3)>a,則a可以是什么數(shù)? 分析:=a(a0),要填第一個空格可以根據(jù)這個結(jié)論,第二空格就不行,應(yīng)變形,使“( )2”中的數(shù)是正數(shù),因為,當(dāng)a0時,=,那么-a0 (1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知=a,而a要大于a,只有什么時候才能保證呢?a<0 解:(1)因為=a,所以a0; (2)因為=-a,所以a0;(3)因為當(dāng)a0時=a,要使>a,即使a>a所以a不存在;當(dāng)a<0時,=-a,要使>a,即使-a>a,a<0綜上,a<0例3當(dāng)x>2,化簡- 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:=a(a0)及其運(yùn)用,同時理解當(dāng)a<0時,a的應(yīng)用拓展 六、布置作業(yè) 1先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解答如下: 甲的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紹興職業(yè)技術(shù)學(xué)院《工程項目管理與工程倫理》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州機(jī)電職業(yè)技術(shù)學(xué)院《項目管理與預(yù)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 宿州航空職業(yè)學(xué)院《俄語IV》2023-2024學(xué)年第二學(xué)期期末試卷
- 閩南理工學(xué)院《機(jī)器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春中醫(yī)藥大學(xué)外科護(hù)理學(xué)考研沖刺題
- 吉林師范大學(xué)博達(dá)學(xué)院《高級日語二》2023-2024學(xué)年第二學(xué)期期末試卷
- 定西職業(yè)技術(shù)學(xué)院《應(yīng)用統(tǒng)計學(xué)含實(shí)驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 安徽省示范高中皖北協(xié)作區(qū)2025屆高三下學(xué)期第27屆聯(lián)考(一模)數(shù)學(xué)試題 含解析
- 西昌民族幼兒師范高等專科學(xué)?!逗铣缮飳W(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025中型酒店轉(zhuǎn)讓合同范本
- 創(chuàng)新學(xué)習(xí)方法助力2024年ESG考試的試題及答案
- 2025年陜西省西安市高新唐南中學(xué)中考數(shù)學(xué)二模試卷(原卷版+解析版)
- 2025年鄭州鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 2024上海閔行區(qū)中小學(xué)教師招聘考試試題及答案
- 2024年新人教版九年級上冊化學(xué)教學(xué)課件 6.3 二氧化碳的實(shí)驗室制取
- 醫(yī)療器械行業(yè)市場分析表格
- 土壤污染防治與修復(fù)項目合同
- 2014-2021年湖北普通專升本大學(xué)英語真題試題及答案
- 《第二單元 我是機(jī)器人工程師 1 垃圾的收集》說課稿-2023-2024學(xué)年川教版信息技術(shù)(2019)六年級下冊
- GB/T 23694-2024風(fēng)險管理術(shù)語
- 2024年晉中職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫往年題考
評論
0/150
提交評論