版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第一章 空間幾何體本章教材分析 柱體、錐體、臺體和球體是簡單的幾何體,復(fù)雜的幾何體大都是由這些簡單的幾何體組合而成的.有關(guān)柱體、錐體、臺體和球體的研究是研究比較復(fù)雜的幾何體的基礎(chǔ).本章研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面積和體積等.運(yùn)用直觀感知、操作確認(rèn)、度量計(jì)算等方法,認(rèn)識和探索空間幾何圖形及其性質(zhì). 本章中的有關(guān)概念,主要采用分析具體實(shí)例的共同特點(diǎn),再抽象其本質(zhì)屬性空間圖形而得到.教學(xué)中應(yīng)充分使用直觀模型,必要時要求學(xué)生自己制作模型,引導(dǎo)學(xué)生直觀感知模型,然后再抽象出有關(guān)空間幾何體的本質(zhì)屬性,從而形成概念. 本章內(nèi)容是在義務(wù)教育階段學(xué)習(xí)的基礎(chǔ)上展開的.例如,對于棱柱,在義務(wù)教育階
2、段直觀認(rèn)識正方體、長方體等的基礎(chǔ)上,進(jìn)一步研究了棱柱的結(jié)構(gòu)特征及其體積、表面積.因此,在教材內(nèi)容安排中,特別注意了與義務(wù)教育階段“空間與圖形”相關(guān)內(nèi)容的銜接. 值得注意的是在教學(xué)中,要堅(jiān)持循序漸進(jìn),逐步滲透空間想象能力面的訓(xùn)練.由于受有關(guān)線面位置關(guān)系知識的限制,在講解空間幾何體的結(jié)構(gòu)時,少問為什么,多強(qiáng)調(diào)感性認(rèn)識.要準(zhǔn)確把握這方面的要求,防止拔高教學(xué).重視函數(shù)與信息技術(shù)整合的要求,通過電腦繪制簡單幾何體的模型,使學(xué)生初步感受到信息技術(shù)在學(xué)習(xí)中的重要作用.為了體現(xiàn)教材的選擇性,在練習(xí)題安排上加大了彈性,教師應(yīng)根據(jù)學(xué)生的實(shí)際,合理地進(jìn)行取舍. 本章教學(xué)時間約需7課時,具體分配如下(僅供參考):1.
3、1.1柱、錐、臺、球的結(jié)構(gòu)特征約1課時1.1.2簡單組合體的結(jié)構(gòu)特征約1課時1.2.1中心投影與平行投影約1課時1.2.2空間幾何體的三視圖1.2.3空間幾何體的直觀圖約1課時1.3.1柱體、錐體、臺體的表面積與體積約1課時1.3.2球的體積和表面積約1課時本章復(fù)習(xí)約1課時1.1 空間幾何體的結(jié)構(gòu)1.1.1 柱、錐、臺、球的結(jié)構(gòu)特征整體設(shè)計(jì)教學(xué)分析 本節(jié)教材先展示大量幾何體的實(shí)物、模型、圖片等,讓學(xué)生感受空間幾何體的結(jié)構(gòu)特征,從整體上認(rèn)識空間幾何體,再深入細(xì)節(jié)認(rèn)識,更符合學(xué)生的認(rèn)知規(guī)律. 值得注意的是:由于沒有點(diǎn)、直線、平面的有關(guān)知識,所以本節(jié)的學(xué)習(xí)不能建立在嚴(yán)格的邏輯推理的基礎(chǔ)上,這與以往的
4、教材有較大的區(qū)別,教師在教學(xué)中要充分注意到這一點(diǎn).本節(jié)教學(xué)盡量使用信息技術(shù)等手段,向?qū)W生展示更多具有典型幾何結(jié)構(gòu)特征的空間物體,增強(qiáng)學(xué)生的感受.三維目標(biāo)1.掌握柱、錐、臺、球的結(jié)構(gòu)特征,學(xué)會觀察、分析圖形,提高空間想象能力和幾何直觀能力.2.能夠描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu),學(xué)會建立幾何模型研究空間圖形,培養(yǎng)數(shù)學(xué)建模的思想.重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征.教學(xué)難點(diǎn):歸納柱、錐、臺、球的結(jié)構(gòu)特征.課時安排1課時教學(xué)過程導(dǎo)入新課思路1.從古至今,各個國家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大廈的旋轉(zhuǎn)酒吧、旋轉(zhuǎn)餐廳,還有上海東方明珠塔上的兩個球形建筑等.它們都是獨(dú)具匠心、
5、整體協(xié)調(diào)的建筑物,是建筑師們集體智慧的結(jié)晶.今天我們?nèi)绾螐臄?shù)學(xué)的角度來看待這些建筑物呢?引出課題:柱、錐、臺、球的結(jié)構(gòu)特征.思路2.在我們的生活中會經(jīng)常發(fā)現(xiàn)一些具有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流.教師對學(xué)生的活動及時給予評價(jià).引出課題:柱、錐、臺、球的結(jié)構(gòu)特征.推進(jìn)新課新知探究提出問題1.觀察下面的圖片,請將這些圖片中的物體分成兩類,并說明分類的標(biāo)準(zhǔn)是什么?圖12.你能給出多面體和旋轉(zhuǎn)體的定義嗎?活動:讓學(xué)生分組討論,根據(jù)初中已有的知識,學(xué)生很快就能分成兩類,對沒有思路的學(xué)生,教師予以提示.1.根據(jù)圍成幾何體的面是否都是平面來分類.2
6、.根據(jù)圍成幾何體的面的特點(diǎn)來定義多面體,利用動態(tài)的觀點(diǎn)來定義旋轉(zhuǎn)體.討論結(jié)果:1.通過觀察,可以發(fā)現(xiàn),(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同樣的特點(diǎn):組成幾何體的每個面都是平面圖形,并且都是平面多邊形,像這樣的幾何體稱為多面體;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同樣的特點(diǎn):組成它們的面不全是平面圖形,像這樣的幾何體稱為旋轉(zhuǎn)體.2.多面體:一般地,由若干個平面多邊形圍成的幾何體叫做多面體.圍成多面體的各個多邊形叫做多面體的面;相鄰兩個面的公共邊叫做多面體的棱;棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn).按圍成多面體的面數(shù)分為:四面體
7、、五面體、六面體、,一個多面體最少有4個面,四面體是三棱錐.棱柱、棱錐、棱臺均是多面體.旋轉(zhuǎn)體:由一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體,這條定直線叫做旋轉(zhuǎn)體的軸.圓柱、圓錐、圓臺、球均是旋轉(zhuǎn)體.提出問題1.與其他多面體相比,圖片中的多面體(5)、(7)、(9)具有什么樣的共同特征?2.請給出棱柱的定義?3.與其他多面體相比,圖片中的多面體(14)、(15)具有什么樣的共同特征?4.請給出棱錐的定義.5.利用同樣的方法給出棱臺的定義.活動:學(xué)生先思考或討論,如果學(xué)生沒有思路時,教師再提示.對于1、3,可根據(jù)圍成多面體的各個面的關(guān)系來分析.對于2,利用多面體(5)
8、、(7)、(9)的共同特征來定義棱柱.對于4,利用多面體(14)、(15)的共同特征來定義棱錐.對于5,利用圖片中的多面體(13)、(16)的共同特征來定義棱臺.討論結(jié)果:1.特點(diǎn)是:有兩個面平行,其余的面都是平行四邊形.像這樣的幾何體稱為棱柱.2.定義:兩個平面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面圍成的多面體稱為棱柱.棱柱中,兩個互相平行的面叫做棱柱的底面;其余各面叫做棱柱的側(cè)面;相鄰側(cè)面的公共邊叫做棱柱的側(cè)棱;側(cè)面與底面的公共頂點(diǎn)叫做棱柱的頂點(diǎn).表示法:用表示底面各頂點(diǎn)的字母表示棱柱.分類:按底面多邊形的邊數(shù)分為三棱柱、四棱柱、五棱柱3.其中一個面
9、是多邊形,其余各面是三角形,這樣的幾何體稱為棱錐.4.定義:有一面為多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,這些面圍成的多面體叫做棱錐.這個多邊形面叫做棱錐的底面或底;有公共頂點(diǎn)的各個三角形面叫做棱錐的側(cè)面;各側(cè)面的公共頂點(diǎn)叫做棱錐的頂點(diǎn);相鄰側(cè)面的公共邊叫做棱錐的側(cè)棱.表示法:用頂點(diǎn)和底面各頂點(diǎn)的字母表示.分類:按底面多邊形的邊數(shù)分為三棱錐、四棱錐、五棱錐5.定義:用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分叫做棱臺.原棱錐的底面和截面叫做棱臺的下底面和上底面;其他各面叫做棱臺的側(cè)面;相鄰側(cè)面的公共邊叫做棱臺的側(cè)棱;底面多邊形與側(cè)面的公共頂點(diǎn)叫做棱臺的頂點(diǎn).表示法:用表示底面
10、各頂點(diǎn)的字母表示棱臺.分類:按底面多邊形的邊數(shù)分為三棱臺、四棱臺、五棱臺提出問題1.與其他旋轉(zhuǎn)體相比,圖片中的旋轉(zhuǎn)體(1)、(8)具有什么樣的共同特征?2.請給出圓柱的定義.3.其他旋轉(zhuǎn)體相比,圖片中的旋轉(zhuǎn)體(3)、(6)具有什么樣的共同特征?4.請給出圓錐的定義.5.類比圓錐和圓柱的定義方法,請給出圓臺的定義.6.用同樣的方法給出球的定義.討論結(jié)果:1.靜態(tài)的觀點(diǎn):有兩個平行的平面,其他的面是曲面;動態(tài)的觀點(diǎn):矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體.像這樣的旋轉(zhuǎn)體稱為圓柱.2.定義:以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的旋轉(zhuǎn)體叫做圓柱.旋轉(zhuǎn)軸叫做圓柱的軸;垂直于旋轉(zhuǎn)軸
11、的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于軸的邊旋轉(zhuǎn)而成的曲面叫做圓柱的側(cè)面,圓柱的側(cè)面又稱為圓柱面,無論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫做圓柱側(cè)面的母線.表示:圓柱用表示軸的字母表示.規(guī)定:圓柱和棱柱統(tǒng)稱為柱體.3.靜態(tài)的觀點(diǎn):有一平面,其他的面是曲面;動態(tài)的觀點(diǎn):直角三角形繞其一直角邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體.像這樣的旋轉(zhuǎn)體稱為圓錐.4.定義:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐.旋轉(zhuǎn)軸叫做圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面稱為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓錐的側(cè)面,圓錐的側(cè)面又稱為圓錐面,無論轉(zhuǎn)到什么位置,這條邊
12、都叫做圓錐側(cè)面的母線.表示:圓錐用表示軸的字母表示.規(guī)定:圓錐和棱錐統(tǒng)稱為錐體.5.定義:以直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓臺.還可以看成是用平行于圓錐底面的平面截這個圓錐,截面與底面之間的部分.旋轉(zhuǎn)軸叫做圓臺的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面稱為圓臺的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺的側(cè)面,無論轉(zhuǎn)到什么位置,這條邊都叫做圓臺側(cè)面的母線.表示:圓臺用表示軸的字母表示.規(guī)定:圓臺和棱臺統(tǒng)稱為臺體.6.定義:以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡稱球.半圓的圓心稱為球心
13、,連接球面上任意一點(diǎn)與球心的線段稱為球的半徑,連接球面上兩點(diǎn)并且過球心的線段稱為球的直徑.表示:用表示球心的字母表示.知識總結(jié):1.棱柱、棱錐、棱臺的結(jié)構(gòu)特征比較,如下表所示:結(jié)構(gòu)特征棱柱棱錐棱臺定義兩個平面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,這些面圍成的幾何體稱為棱柱有一面為多邊形,其余各面是有一個公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺底面兩底面是全等的多邊形多邊形兩底面是相似的多邊形側(cè)面平行四邊形三角形梯形側(cè)棱平行且相等相交于頂點(diǎn)延長線交于一點(diǎn)平行于底面的截面與兩底面是全等
14、的多邊形與底面是相似的多邊形與兩底面是相似的多邊形過不相鄰兩側(cè)棱的截面平行四邊形三角形梯形2.圓柱、圓錐、圓臺、球的結(jié)構(gòu)特征比較,如下表所示:結(jié)構(gòu)特征圓柱圓錐圓臺球定義以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓柱以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓錐以直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓臺以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的幾何體稱為球體,簡稱球底面兩底面是平行且半徑相等的圓圓兩底面是平行但半徑不相等的圓無側(cè)面展開圖矩形扇形扇
15、環(huán)不可展開母線平行且相等相交于頂點(diǎn)延長線交于一點(diǎn)無平行于底面的截面與兩底面是平行且半徑相等的圓平行于底面且半徑不相等的圓與兩底面是平行且半徑不相等的圓球的任何截面都是圓軸截面矩形等腰三角形等腰梯形圓3.簡單幾何體的分類:應(yīng)用示例思路1例1 下列幾何體是棱柱的有( )圖2A.5個 B.4個 C.3個 D.2個活動:判斷一個幾何體是哪種幾何體,一定要緊扣柱、錐、臺、球的結(jié)構(gòu)特征,注意定義中的特殊字眼,切不可馬虎大意.棱柱的結(jié)構(gòu)特征有三方面:有兩個面互相平行;其余各面是平行四邊形;這些平行四邊形面中,每相鄰兩個面的公共邊都互相平行.當(dāng)一個幾何體同時滿足這三方面的結(jié)構(gòu)特征時,這個幾何體才是棱柱.很明顯
16、,幾何體均不符合,僅有符合.答案:D點(diǎn)評:本題主要考查棱柱的結(jié)構(gòu)特征.本題容易錯認(rèn)為幾何體也是棱柱,其原因是忽視了棱柱必須有兩個面平行這個結(jié)構(gòu)特征,避免出現(xiàn)此類錯誤的方法是將教材中的各種幾何體的結(jié)構(gòu)特征放在一起對比,并且和圖形對應(yīng)起來記憶,要做到看到文字?jǐn)⑹鼍拖氲綀D,看到圖形就想到文字?jǐn)⑹?變式訓(xùn)練1.下列幾個命題中,兩個面平行且相似,其余各面都是梯形的多面體是棱臺;有兩個面互相平行,其余四個面都是等腰梯形的六面體是棱臺;各側(cè)面都是正方形的四棱柱一定是正方體;分別以矩形兩條不等的邊所在直線為旋轉(zhuǎn)軸,將矩形旋轉(zhuǎn),所得到的兩個圓柱是兩個不同的圓柱.其中正確的有_個.( )A.1 B.2 C.3 D
17、.4分析:中兩個底面平行且相似,其余各面都是梯形,并不能保證側(cè)棱會交于一點(diǎn),所以是錯誤的;中兩個底面互相平行,其余四個面都是等腰梯形,也有可能兩底面根本就不相似,所以不正確;中底面不一定是正方形,所以不正確;很明顯是正確的.答案:A2.下列命題中正確的是( )A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱C.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐D.棱臺各側(cè)棱的延長線交于一點(diǎn)答案:D3.下列命題中正確的是( )A.以直角三角形的一直角邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺C.圓柱、圓錐、圓
18、臺都有兩個底面D.圓錐的側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐底面圓的半徑分析:以直角梯形垂直于底的腰為軸,旋轉(zhuǎn)所得的旋轉(zhuǎn)體才是圓臺,所以B不正確;圓錐僅有一個底面,所以C不正確;圓錐的側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的母線長,所以D不正確.很明顯A正確.答案:A思路2例1 (2007寧夏模擬,理6)長方體AC1的長、寬、高分別為3、2、1,從A到C1沿長方體的表面的最短距離為( )A. B. C. D.活動:解決空間幾何體表面上兩點(diǎn)間最短線路問題,一般都是將空間幾何體表面展開,轉(zhuǎn)化為求平面內(nèi)兩點(diǎn)間線段長,這體現(xiàn)了數(shù)學(xué)中的轉(zhuǎn)化思想.解:如圖3,在長方體ABCDA1B1C1
19、D1中,AB=3,BC=2,BB1=1.圖3如圖4所示,將側(cè)面ABB1A1和側(cè)面BCC1B1展開,圖4則有AC1=,即經(jīng)過側(cè)面ABB1A1和側(cè)面BCC1B1時的最短距離是;如圖5所示,將側(cè)面ABB1A1和底面A1B1C1D1展開,則有AC1=,即經(jīng)過側(cè)面ABB1A1和底面A1B1C1D1時的最短距離是;圖5如圖6所示,將側(cè)面ADD1A1和底面A1B1C1D1展開,圖6則有AC1=,即經(jīng)過側(cè)面ADD1A1和底面A1B1C1D1時的最短距離是.由于,所以由A到C1在正方體表面上的最短距離為.答案:C點(diǎn)評:本題主要考查空間幾何體的簡單運(yùn)算及轉(zhuǎn)化思想.求表面上最短距離可把圖形展成平面圖形.變式訓(xùn)練1.
20、圖7是邊長為1 m的正方體,有一蜘蛛潛伏在A處,B處有一小蟲被蜘蛛網(wǎng)粘住,請制作出實(shí)物模型,將正方體剪開,描述蜘蛛爬行的最短路線. 圖7 圖8分析:制作實(shí)物模型(略).通過正方體的展開圖8可以發(fā)現(xiàn),AB間的最短距離為A、B兩點(diǎn)間的線段的長.由展開圖可以發(fā)現(xiàn),C點(diǎn)為其中一條棱的中點(diǎn).具體爬行路線如圖9中的粗線所示,我們要注意的是爬行路線并不唯一.解:爬行路線如圖9(1)(6)所示:圖92.(2006江西高考,理15)如圖10所示,已知正三棱柱ABCA1B1C1的底面邊長為1,高為8,一質(zhì)點(diǎn)自A點(diǎn)出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長為_.圖10分析:將正三棱柱ABCA1B1C1沿
21、側(cè)棱AA1展開,其側(cè)面展開圖如圖11所示,則沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長就是圖11中AD+DA1.延長A1F至M,使得A1F=FM,連接DM,則A1D=DM,如圖12所示. 圖11 圖12則沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長就是圖12中線段AM的長.在圖12中,AA1M是直角三角形,則AM=10.答案:10知能訓(xùn)練1.(2007廣東中山二模,文2)如圖13,觀察四個幾何體,其中判斷正確的是( )圖13A.(1)是棱臺 B.(2)是圓臺C.(3)是棱錐 D.(4)不是棱柱分析:圖(1)不是由棱錐截來的,所以(1)不是棱臺;圖(2)上下兩個面不平行,所以(2)不是
22、圓臺;圖(4)前后兩個面平行,其他面是平行四邊形,且每相鄰兩個四邊形的公共邊平行,所以(4)是棱柱;很明顯(3)是棱錐.答案:C2.下面幾何體中,過軸的截面一定是圓面的是( )A.圓柱 B.圓錐 C.球 D.圓臺分析:圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺的軸截面是等腰梯形,球的軸截面是圓面,所以A、B、D均不正確.答案:C3.(2007山東菏澤二模,文13)一個無蓋的正方體盒子展開后的平面圖,如圖14所示,A、B、C是展開圖上的三點(diǎn),則在正方體盒子中ABC=_.圖14分析:如圖15所示,折成正方體,很明顯點(diǎn)A、B、C是上底面正方形的三個頂點(diǎn),則ABC=90°.圖15答案
23、:90°4.(2007山東東營三模,文13)有一粒正方體的骰子每一個面有一個英文字母,如圖16所示.從3種不同角度看同一粒骰子的情況,請問H反面的字母是_.圖16分析:正方體的骰子共有6個面,每個面都有一個字母,從每一個圖中都看到有公共頂點(diǎn)的三個面,與標(biāo)有S的面相鄰的面共有四個,由這三個圖,知這四個面分別標(biāo)有字母H、E、O、p、d,因此只能是標(biāo)有“p”與“d”的面是同一個面,p與d是一個字母;翻轉(zhuǎn)圖,使S面調(diào)整到正前面,使p轉(zhuǎn)成d,則O為正下面,所以H的反面是O.答案:O5.圓臺的一個底面周長是另一個底面周長的3倍,軸截面的面積等于392 cm2,母線與軸的夾角是45°,求
24、這個圓臺的高、母線長和底面半徑.分析:這類題目應(yīng)該選取軸截面研究幾何關(guān)系.解:圓臺的軸截面如圖17,圖17設(shè)圓臺上、下底面半徑分別為x cm和3x cm,延長AA1交OO1的延長線于S.在RtSOA中,ASO=45°,則SAO=45°.所以SO=AO=3x.所以O(shè)O1=2x.又(6x+2x)·2x=392,解得x=7,所以圓臺的高OO1=14 cm,母線長l=OO1=cm,而底面半徑分別為7 cm和21 cm,即圓臺的高14 cm,母線長cm,底面半徑分別為7 cm和21 cm.6.(2005全國高中數(shù)學(xué)競賽浙江預(yù)賽,4)正方體的截平面不可能是鈍角三角形;直角三角
25、形;菱形;正五邊形;正六邊形. 下述選項(xiàng)正確的是:( )A. B. C. D.分析:正方體的截平面可以是銳角三角形、等腰三角形、等邊三角形,但不可能是鈍角三角形、直角三角形(證明略);對四邊形來講,可以是梯形(等腰梯形)、平行四邊形、菱形、矩形,但不可能是直角梯形(證明略);對五邊形來講,不可能是正五邊形(證明略);對六邊形來講,可以是六邊形(正六邊形).答案:B拓展提升1.有兩個面互相平行,其余各面是平行四邊形的幾何體是棱柱嗎?分析:如圖18所示,此幾何體有兩個面互相平行,其余各面是平行四邊形,很明顯這個幾何體不是棱柱,因此說有兩個面互相平行,其余各面是平行四邊形的幾何體不一定是棱柱.圖18 由此看,判斷一個幾何體是否是棱柱,關(guān)鍵是緊扣棱柱的3個本質(zhì)特征:有兩個面互相平行;其余各面都是四邊形;每相鄰兩個四邊形的公共邊都互相平行.這3個特征缺一不可,圖18所示的幾何體不具
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 脾胃虛弱動畫冬病夏治
- 大叔爺爺課件教學(xué)課件
- 2024年分子篩項(xiàng)目投資申請報(bào)告代可行性研究報(bào)告
- 物聯(lián)網(wǎng)畢業(yè)設(shè)計(jì)論文
- 龍蝦的課件教學(xué)課件
- 牙體牙髓病常用藥物
- 2.1.2碳酸鈉和碳酸氫鈉 課件高一上學(xué)期化學(xué)人教版(2019)必修第一冊
- 糖尿病胰島素注射治療
- 新公司企業(yè)規(guī)劃
- 合唱團(tuán)說課稿
- 膿毒癥并膿毒癥休克指南課件
- 學(xué)校安全風(fēng)險(xiǎn)隱患排查臺賬表
- 邊坡工程支護(hù)設(shè)計(jì)計(jì)算書Word
- GLP-1受體激動劑與DPP-4抑制劑幻燈
- 證券投資學(xué)習(xí)題(霍文文)附答案
- 地鐵綜合監(jiān)控施工組織設(shè)計(jì)
- 日用陶瓷項(xiàng)目企劃書(模板參考)
- 專利入池協(xié)議
- 古詩接龍100首
- 會計(jì)專業(yè)剖析報(bào)告 - 副本
- 天津民眾體檢中心——教你看懂體檢報(bào)告ppt課件
評論
0/150
提交評論