外文翻譯--用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型_第1頁
外文翻譯--用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型_第2頁
外文翻譯--用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型_第3頁
外文翻譯--用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型_第4頁
外文翻譯--用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、外文翻譯-用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型 用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型摘要 一個可以預(yù)測板坯表面溫度分布和熱流情況的數(shù)學(xué)傳熱模型已開發(fā)出來了,主要是通過充分考慮在爐膛內(nèi)的板坯的熱輻射和瞬態(tài)熱傳導(dǎo)方程來實現(xiàn)的。該爐型是參照散熱介質(zhì)在空間中的變恒溫過程和恒定的吸收系數(shù)來設(shè)計的。鋼坯由步進(jìn)梁從一個固定梁移動到下一個固定梁上,是以通過加熱爐預(yù)熱段.加熱段和均熱段為鋼坯熱傳導(dǎo)方程的邊界條件的加熱爐模型。輻射熱通量的計算是通過采用有限體積法,在爐子的內(nèi)部,以爐墻.爐頂.爐底構(gòu)成的充滿煙氣的環(huán)境里,作為板坯的瞬態(tài)傳導(dǎo)方程的邊界條件來進(jìn)行計算的。板坯的傳熱特性和溫度特

2、性是通過調(diào)查可以改變板坯吸收系數(shù)和發(fā)射率的參數(shù)來確定的。比較多次的實踐工作表明,目前用于預(yù)測板坯在加熱爐中的傳熱過程和熱流量的狀況示范工程得到了很好的效果。關(guān)鍵詞:加熱爐;鋼坯加熱;輻射傳熱;瞬態(tài)熱傳導(dǎo);有限體積法1 導(dǎo)言在過去數(shù)十年以來,爐子進(jìn)入降低能源消耗和污染物排放量的階段,而分析鋼坯瞬態(tài)熱特性,在加熱爐工程應(yīng)用上已吸引了相當(dāng)多注意。此外,限定板坯在爐子內(nèi)有均勻的溫度分布才能出爐的重要性大大增加了,只有準(zhǔn)確、快速的預(yù)測爐內(nèi)板坯的溫度,才能為以后的軋制過程提供比較好的原料,因為這決定了鋼鐵產(chǎn)品質(zhì)量的高低。在本質(zhì)上,在爐膛內(nèi)的整個燃燒過程和由此產(chǎn)生的熱氣流同時影響傳熱.對流和熱輻射過程。然而

3、,復(fù)雜的爐子內(nèi)部的三維結(jié)構(gòu)包括固定梁和步行梁打滑問題使的難以在經(jīng)濟(jì)上做出準(zhǔn)確的分析。因此,模型和方法對于預(yù)測爐子內(nèi)部燃燒特性和傳熱過程中存在著很高的要求。尤其是,準(zhǔn)確預(yù)測熱輻射量是最重要的,因為熱輻射傳熱超過流過板坯表面總熱流的90。 現(xiàn)在沒有一個單一的輻射模型就能夠解決所有在工程應(yīng)用中遇到的情況,所以應(yīng)選擇一個合適的途徑為自己的側(cè)重點。為了預(yù)測通過板坯表面上的輻射熱通量,從而準(zhǔn)確計算出爐子內(nèi)板坯的溫度分布,其解決方法是板坯必須是做連續(xù)運動, 無灰的燃燒煙氣作為該爐輻射氣體,以及復(fù)雜的爐壁幾何結(jié)構(gòu)包括彎曲的板坯和防滑管道堵塞的影響,還有就是一定量的計算。許多可以預(yù)測在加熱爐內(nèi)板坯傳熱特性的模型

4、和方法已經(jīng)開發(fā)出來了,并且成功的應(yīng)用到各種不同的爐型中,這些方法可以歸類為下面幾類:第一個是要解決好控制熱氣體流動和燃燒過程的節(jié)能方程,把熱輻射作為輻射熱流的能源來源,金大中等人完成了這些三維傳熱特性的分析,主要是考慮到煙氣在步進(jìn)梁上鋼坯的湍流.平流和輻射傳熱作用,并用簡潔的FLUENT代碼表示出來。同時可以預(yù)測爐子內(nèi)部的鋼坯的溫度分布和鋼坯上下表面流過的熱流量。金正日等人進(jìn)行了類似的分析,并且做了預(yù)測鋼坯順態(tài)傳熱性能的熱傳導(dǎo)方程。雖然這些都是流體力學(xué)計算分析,但是可以用于準(zhǔn)確地預(yù)測傳熱和燃燒的特點。在爐子內(nèi)部鋼坯的加熱存在著這樣的困難,因為處理那么多的方程和復(fù)雜的窯爐結(jié)構(gòu),以及不確定的模式,

5、因而要求進(jìn)行長期的監(jiān)測計算和由此產(chǎn)生的費用。第二種方法是把加熱爐分成幾段爐氣成分和性質(zhì)相同的部分,再用由查仆曼等人提出的一維氣體能量平衡進(jìn)行分析。他們想通過實驗參數(shù)的觀察,找出影響加熱爐內(nèi)鋼坯及耐火墻輻射和燃燒空間高度,以及傳熱性能的因素。雖然沒有什么結(jié)果,但是,進(jìn)行了有關(guān)鋼坯溫度分布的預(yù)測,并且進(jìn)行了一些需要處理極其復(fù)雜的步進(jìn)式加熱爐的集合特性修改審議工作。最后比較前面一種方法,這種辦法很簡單,可以合理的模擬出鋼坯的熱量分布狀況,且把重點放在分析關(guān)于氣體輻射傳熱和鋼坯內(nèi)部瞬態(tài)傳導(dǎo)上,資料五的作者研究的穩(wěn)態(tài)傳熱模型,在用這個模型時,爐子內(nèi)的熱輻射計算用分區(qū)計算的方法,而鋼坯的熱反應(yīng)可以通過解析

6、瞬態(tài)二維熱傳導(dǎo)方程來獲得。以筆者的了解,用分區(qū)計算法計算工程的成本,以及處理復(fù)雜的加熱爐結(jié)構(gòu)因素還是有一定難度的。而資料6的作者也開發(fā)了類似的預(yù)測爐子內(nèi)部的傳熱模型,爐氣充滿爐內(nèi)空腔,在爐墻和防滑管道上,以板坯在爐子內(nèi)前進(jìn)的方向為基準(zhǔn)的橫向二維穩(wěn)態(tài)傳熱為研究重點。而比起前一種方法,這種方法更加的簡單,減少了我們計算所需要的時間。對于更普通的和計算效率更加高的模型,就提出了更高的要求,為快速而準(zhǔn)確的預(yù)測鋼坯內(nèi)部的溫度分布,如果考慮到有用聯(lián)合模式,及監(jiān)測和控制爐子內(nèi)情況,就像是控制燃燒器和板坯停留在爐子內(nèi)的時間的實時操作。 最近,巴西和杜塔 7 介紹了一種在直燃型推鋼式加熱爐,采用有限體積法計算傳

7、熱輻射的模型。在這項工作中,預(yù)測爐內(nèi)的流過板坯表面熱通量和鋼坯內(nèi)溫度分布的數(shù)學(xué)傳熱模型已經(jīng)研制成功,在板坯在步進(jìn)式加熱爐中,通過分別考慮在爐膛內(nèi)熱輻射和瞬態(tài)傳導(dǎo)方程來實現(xiàn)。該爐是仿照關(guān)于輻射介質(zhì)在空間中線性變溫和恒定吸收系數(shù)來設(shè)計的。板坯是由步進(jìn)梁傳送的,由步進(jìn)梁定期運送通過預(yù)熱段.加熱段和均熱段。輻射熱通量計算采用有限體積法以輻射熱交換與爐膛輻射效果,爐墻,爐頂,和燃燒氣體適用瞬態(tài)熱傳導(dǎo)方程的邊界條件計算的。在以下幾節(jié)描述后,這里預(yù)測爐過程與加熱爐所采用的方法是,查找鋼坯傳熱性能和熱通量,通過改變板坯的吸收系數(shù)和發(fā)射率等參數(shù),而還介紹了與實踐數(shù)據(jù)的比較。最后,作出有一些結(jié)論性意見的適當(dāng)?shù)慕忉?/p>

8、。 2 制定2.1 爐子說明 加熱爐的任務(wù)是為隨后的軋制過程將鋼坯加熱到將近,為加熱鋼坯所消耗的能源,由頂部和底部的煤氣燒嘴提供的。通常情況下,將加熱爐分成5個區(qū)域,排煙區(qū),換熱區(qū), 預(yù)熱段,加熱段和均熱段,如圖表1顯示。這是浦項制鐵公司的簡化爐模型。鋼坯由步進(jìn)梁從一個固定梁移動到下一個固定梁上,步進(jìn)梁大約一分鐘移動一次,看板坯在爐子內(nèi)部停留時間來決定的。總的爐子長度規(guī)定為39.2米,而爐膛高度是變化的,每一個區(qū)用傾斜屋頂連接。每個鋼板是長1.16米,厚度是0.23米,鋼坯之間的間距是0.2米。因此,在目前爐存在著共計28鋼坯。該鋼坯被假定為溫度時被送入爐內(nèi)。板坯停留時間,即從預(yù)熱段入口到均熱

9、段的出口為止,經(jīng)過180分鐘的加熱,在爐膛出口板坯獲得平均溫度約,因此,鋼坯每4.6分鐘就移動一次。2.2 方程 如圖2顯示了發(fā)生在爐膛內(nèi)部傳熱過程,在這項研究中,假定向板坯表面熱傳遞模式只有熱輻射傳熱。鋼板內(nèi)部傳熱可以用瞬態(tài)二維熱傳導(dǎo)方程計算出來,及公式一。其中,C和K分別為密度,比熱,該鋼板的導(dǎo)電性。 1 2 3 4 通過該板坯表面輻射熱通量,在圖三中已經(jīng)顯示出來了,是用來作為上述方程( 1 )的邊界條件,其中是鋼坯表面和方向的輻射強(qiáng)度。是在板坯表面正常的單位向量,是立體角。是活性輻射介質(zhì)輻射在任何方向的強(qiáng)度,沿著路徑 通過介質(zhì)的吸收,發(fā)射和散射可以確定以下方程(3), 是吸收光系數(shù), 是

10、散射反照率,是從傳入方向向方向散射的散射系數(shù),這個等式,如果平均溫度和邊界條件強(qiáng)度給出,提供了一個輻射強(qiáng)度分布情況等。一個漫反射與溫度,這是方程邊界條件。那么方程( 3 )可表示為發(fā)射量和反射量的總和,如方程(4), 其中是爐墻的發(fā)射率,而是黑體強(qiáng)度的墻上。 2.3 有限體積的解決方法 瞬態(tài)熱傳導(dǎo)方程是由帕坦卡 8 所建議的使用有限體積法的離散型程序。一個中心差分法用于在X和Y方向擴(kuò)散的條件。由此產(chǎn)生的離散系統(tǒng),然后反復(fù)使用TDMA的算法來解決,直到溫度場的板坯滿足下列收斂準(zhǔn)則可使用德國馬克瓦特的定向量來預(yù)測如下: 為獲板坯每個時間的溫度, 計算從熱輻射開始,在加熱爐商會給予的對每個板坯表面輻

11、射熱通量, 然后,板坯的熱傳導(dǎo)是順序模擬從第一到最后第二十八板坯。這一計算回路重復(fù),直到板坯由一個步進(jìn)梁移動到下一固定梁,上述計算程序是顯示在該地點最初的板坯溫度進(jìn)行計算的。這些計算程序終止時,它成為該板坯在加熱爐內(nèi)停留的時間。一個控制角度給定,但允許它的方向能夠變化,可以得到下列等式: 6 7 8 9 10 11 其中和分別是表面單元的外法線量。下流節(jié)點強(qiáng)度等于上游節(jié)點強(qiáng)度這是已采納的步驟。離散化過程和有關(guān)量很容易找到在Baek等人的文獻(xiàn)中。如在爐內(nèi)板坯和在底部爐壁塊的這些區(qū)域存在溶液,比如圖4a的點B,Chai等人建議關(guān)閉程序。公式10可以被采納。在這種解決辦法中,雖然計算在整個域完成,在

12、活躍的地區(qū)這種唯一的解決辦法是有意義的。為了解釋閉式的解決辦法,一個額外的項被帶入公式6,如下式12。 12 對于在非活躍區(qū)域的單元,變?yōu)楹停ㄟ@里L(fēng)N是一個非常大的數(shù),比如,然而在活躍區(qū)域和都設(shè)定為相同的零值。對于直接接觸的的活躍單元,例如圖4a的W點,受到下列條件的限制: 13 14 最終,公式8和9的系數(shù)被改變?nèi)缦拢?15 16 當(dāng)下面值收斂時,迭代求解過程終止。 17 這里是以前的迭代值。一旦獲得強(qiáng)度場,在公式2中的板坯表面熱輻射流量可以被測得通過使用方向權(quán)重如下式: 18 在每個時間段若想要獲得每個板坯的溫度,計算就要從爐腔體的熱腐蝕開始。然后板坯內(nèi)部的熱傳導(dǎo)從模擬的第一塊到最后的第2

13、8塊進(jìn)行。這種計算循環(huán)往復(fù),直到板坯通過一個步進(jìn)梁移動到下一個固定的光束上,上述的計算過程通過之前計算過的一位置點的初始板坯溫度進(jìn)行。當(dāng)值變?yōu)榘迮髟跔t內(nèi)的停留時間時這些計算程序被終止。3 結(jié)果與討論3.1 熱行為爐進(jìn)程 加熱爐傳熱與熱輻射模型,上述應(yīng)用調(diào)查在爐膛瞬態(tài)熱傳導(dǎo)和,特別是著眼于每一個板坯溫度和對板坯表面輻射熱流在模型五加熱爐類似浦項制鐵。該爐墻和氣體溫度模擬分別作列于表1 ,板坯的熱性能在表2中給出了。 本的輻射特性,如輻射氣體吸收系數(shù) ,該爐墻分別設(shè)置為0.75和0.5 雖然是假設(shè)沒有散射,即 ,因此, ??臻g網(wǎng)格系統(tǒng)使用在這項研究是和角系統(tǒng)對。所有計算1.7兆赫的個人電腦進(jìn)行,并

14、要求計算時間大約是1260。說明共計28磚溫度分布五區(qū)的爐溫見表1 。第一板坯移動到到周邊熱爐氣體和墻強(qiáng)烈的熱輻射,然后在右上角地區(qū)的板坯加熱至最高溫度。正如所料, 。不過板坯溫度,。顯示,即輻射熱通量(矢量)和輻射(輪廓)。請注意,在兩個區(qū)的板坯輻射熱流向量都集中在位于爐膛高度中心的,這意味著大量的氣。通過相鄰預(yù)熱和加熱區(qū),溫度峰值出現(xiàn)在加熱區(qū)。在另一方面,在最后的,因為爐溫是下跌了約 ,比的板坯是在高溫下幾乎到高爐煤氣溫度,一些輻射熱通量是從熱軋板,。因此,溫度是略有降低,板坯內(nèi)部溫度梯度變小。 形成在鋼坯的右角的地方,而最低氣溫是發(fā)現(xiàn)在板坯的左邊中心位置上。在另一方面,雖然第三塊板坯在圖

15、6中是同樣是在 預(yù)熱段,更多的對板坯表面的熱量通量影響是來自爐膛及爐墻,因為比起第一塊鋼坯來說,更加的深入到預(yù)熱段的內(nèi)部,接近加熱段。因此,板坯的溫度身高的比較快,最高的溫度達(dá)到 ,而最低氣溫也增加至 。不過,迄今為止,板坯溫度分布顯示為夏普梯度。在圖表6c中的第七塊鋼坯已經(jīng)進(jìn)入到加熱段了,由于板坯從預(yù)熱段移動過來,那里的板坯溫度介于和。但是,由于地磚充分加熱,從而板坯和周邊爐氣和爐墻溫差變小,熱流量降低的餓幅度在圖表6d中很明顯的看出來。同樣的原因,在加熱段內(nèi)第17板坯熱流跌幅更大,如圖6E中所示,因此,板坯溫升減弱,溫度分布更均勻。圖表6f說明第26塊板坯在均熱段內(nèi),那里的溫度,相比加熱段

16、降低的幅度更加大。因此,我們可以看到,從加熱段到均熱段,爐墻和周圍熱煙氣對鋼坯的影響或多或少都在減弱。此外,如圖表7所示,預(yù)測板坯在爐膛內(nèi)沿縱向溫度概況,和粉筆指上表面平均溫度的,板坯中心線溫度,和板坯表面降低的溫度幅度。我們可以看到中心線溫度呈線性變化的規(guī)律,開始是,通過第一個區(qū)域后,從升高到 。在最后的均熱段,氣溫略有降低,仍幾乎恒定在約左右。至于上游較低的表面溫度,雖然上層溫度稍低于預(yù)熱段,因為較低的爐墻溫度,而后加熱段的溫度發(fā)生逆轉(zhuǎn)和上層溫度較高,因為存在著兩個低溫區(qū)。與此相反,在均熱段,由于上述回?zé)崃飨卤砻鏈囟冗h(yuǎn)低于中線溫度。3.2 吸收系數(shù)及平板輻射效果 在高溫加熱爐內(nèi),輻射傳熱是

17、煙氣和爐墻主導(dǎo)傳熱模式。在這里尋找影響輻射特性效應(yīng)的一些參數(shù)進(jìn)行研究。圖8顯示介質(zhì)吸收系數(shù)對該板坯縱向溫度剖面中心線溫度效果影響,板坯中心線溫度加吸收系數(shù)從0.1增加到10 。這是因為周圍介質(zhì)吸收系數(shù)的增加熱輻射也增強(qiáng)了。接著,在圖9對板坯發(fā)射率與溫度剖面介紹,板坯發(fā)射率是各不相同的,從0.3到1.0 ,而吸收系數(shù)和爐壁輻射率均保持在0.15和0.75 之間。正如人們預(yù)料的,溫度越高,板坯的發(fā)射率就越大,因為在板坯表面上由于變成黑色而得到更多的熱量。 不過應(yīng)該指出,目前雖然在一些爐子上的到很好的體現(xiàn),我想最后的出口溫度,是在相對狹窄的范圍內(nèi)。 3.3 對比實驗數(shù)據(jù) 最后,浦項制鐵在預(yù)測板坯溫度

18、上利用現(xiàn)有的模型和實驗數(shù)據(jù)進(jìn)行比較,如圖表10所示。在這些數(shù)據(jù)中, 在原位測量降低爐區(qū)平均溫度,這就得到了5個設(shè)在板坯上方和下方的熱電偶選定的位置的數(shù)據(jù),還介紹了與板坯中心線溫度實驗數(shù)據(jù)。為了預(yù)測板坯的溫度,在圖10原位測量溫度顯示,是介質(zhì)溫度和爐墻和樓板輻射系數(shù)維持在0.75 和0.5。此外,在吸收系數(shù)中,在他的模型 13 的基礎(chǔ)上,通過實驗獲得的和的摩爾分?jǐn)?shù)。值得注意的是,盡管各種測量結(jié)果的不確定性也存在著一個合理的預(yù)測結(jié)果與實測概況。尤其是,在均熱段,即出口附近,溫度預(yù)測已經(jīng)有了很好的效果,這意味著目前的傳熱模型,可被成功地應(yīng)用到預(yù)報步進(jìn)式加熱爐內(nèi)板坯溫度上。 4 結(jié)論 傳熱模型和應(yīng)用已

19、變?yōu)閭鳠釥顩r的預(yù)測,在五年中,浦項鋼鐵公司也研發(fā)了相似的加熱爐模型。 在原來的基礎(chǔ)上,給出了縱向爐氣體和壁面溫度, 該模型可以預(yù)測板坯在加熱過程中的輻射熱流量和板坯表面溫度分布,由耦合的RTE和瞬態(tài)熱傳導(dǎo)方程求解。 雖然數(shù)值結(jié)果在為具體的例子審議中,同樣的方法,可用于任何類似的加熱爐模型。進(jìn)一步發(fā)展本模型的目標(biāo)將包括適當(dāng)為分析防滑標(biāo)準(zhǔn)的形成,燃?xì)饧皦囟确植?。最后,發(fā)展為三維傳熱模型。鳴謝作者表示感謝財政支持由浦項制鐵和韓國全北國立大學(xué)。此外,作者想感謝,浦項制鐵技術(shù)研發(fā)中心李先生的建設(shè)性評論和實物幫助。附錄C 外文原文AbstractA mathematical heat transfer

20、model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been develcped bv considering the thermal radiation in the furnace chamber and transient heat conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium wi

21、th spatially varying temperature and constant absorption coefficient.The steel slabs are moved on the next fixed beam by the walking beam after being heated up through the non-firing,charging,preheating.heating,and soaking zones in the furnace.Radiative heat flux calculated from the radiative heat e

22、xchange within the furnace modeled using the FVM by considering the effect of furnace wall ,slab and combustion gases is introduced as the boundary condition of the transient conduction equation of the slab.Heat transfer characteristics and temperature behavior of the slab is investigated by changin

23、g such parameters as absorption coefficient and emissivity of the slabparison with the experimental work show that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.1 Introduction The analysis of transient heating characteristics o

24、f the steel slabs in a reheating furnace has attracted considerable attention during the past few decades since the furnace process should have Jower energy consumption and pollutant emissions.In addition,requirement of the uniform temperature distributions inside the furnace exit greatly increases

25、the importance of accurate and fast prediction of furnace process for the subsequent rolling process because this determines the quality of the steel product.Intrinsically,the combustion process and resulting hot gas flow within the furnace chamber influence the heat transfer process through conduct

26、ion,convection,and thermal radiation simultaneously.However,complex three dimensional structure of the furnace including stationary and walking skids makes the problem difficult to analyze accurately and economically.Therefore,models and methods fir predicting the furnace combusting behavior and hea

27、t transfer processes are in high demand.Especially,accurate prediction of thermal radiation behavior is quite important because the heat transfer by thermal radiation is over 90% of the total heat flux impinging on the slab surface.Now that no single radiation model can solve all situations encounte

28、red in engineering applications,one should select an appropriate approach for his own specific concern.In order to predict the radiative heat flux on the slab surface,thereby,calculate the temperature distribution inside a slab accurately,its solution method must account for the sequential slab move

29、ment,nongray behavior of the furnace radiating gases,and complex geometry including curved furnace wall and blockage effect of slab of slab and skid pipes,as well as moderate computational cost.Numerous practical engineering models and methods for the prediction of thermal heating characteristics of

30、 the slab in a reheating furnace have been developed and successfully applied to various different furnace geometries,and these can be classified as below several categories.The first one is to solve the full Navier-Stokes and energy conservation equations governing the hot gas flow and combustion p

31、rocess in the furnace,where thermal radiation acts as an energy source term via divergence of radiative heat flux.Kim et al. Performed these three dimensional CFD analysis by considering the turbulent reactive flow and radiative heat transfer in the walking beam type slab reheating furnace by using

32、the commercial FLUENT code,and predicted temperature distribution in the furnace and heat fluxes through the upper and Huh conducted similar analysis and predicted the thermal behavior of the slab by considering the transient conduction equation equation in the slab.Although these full CFD analyses

33、can be used for accurate prediction of the thermal and combusting fluid characteristics in the furnace with slab heating,there exist such difficulties as treatment of so many governing equations and complexity of the furnace structure as well as uncertain of the models,therefore,it necessitates long

34、 computational time and resulting costs.The second method models the furnace process as several well-stirred gas zones with one dimensional gas energy balance as suggested by Chapman et al .They performed the parametric investigations to find the effects of slab and refractory wall emissivities and

35、height of the combustion space on the thermal performance of the continuous reheating furnace.They did not,however,predict the temperature distribution inside the slab,and some modifications are needed to deal with the complex furnace geometry and walking beam type reheating furnace geometry and wal

36、king beam type reheating furnace considered in this work.The final approach,which is simple but can reasonably simulysis of radiative heat transfer of furnace gas and transient transient heat conduction within the slab5-7.Liet al.5developed the mathematical model for predicting steady state heat tra

37、nsfer within the reheating furnace,where thermal radiation in a furnace gas is calculated by using the zone method,while the thermal response of the slab is obtained by solving the transient two dimensional conduction equation.To the authors knowledge,however, the computing cost of the zone method i

38、s expensive and extension to general body-fitted coordinates to deal with the complex furnace structure is somewhat difficult.Yang et al.6 also developed the similar heat transfer model and predicted the similar heat transfer transverse to the marching direction of the slab in the reheating furnace.

39、Although it is more simple and less computational with the approach of Li et al.5,more general and computationally efficient model is highly demanded for the fast and accurate temperature prediction of the slab,if considering the useful on-line model which monitors and controls the furnace situation

40、s like control of the burner and residence time of the slab within the furnace for real time operation. Recently,Harish and Dutta 7presented a computational model for the heat transfer in a direct-fired pusher type reheat furnace by using the FYM for gas radiative heat transfer and WSGGM for nongray

41、 behavior of the combustion gases within the furnace.In this work,a mathematical heat transfer model to predict the radiative heat flux impinging on the slab surface and temperature distribution inside the slab has been developed by considering the thermal radiation governing equations in the furnac

42、e chamber and transient conduction governing equations in the slab in the walking beam type reheating furnace,respectively.The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient.The slab is moved on the next fixed bean by the walking beam pe

43、riodically passing through the non-firing,charging,preheating,heating,and soaking zones in the furnace.Radiative heat flux calculated from the radiative heat exchange within the furnace chamber modeled using the finite volume meth od for radiation by considering the effect of furnace wall,slab,and c

44、ombustion gases is applied as the boundary condition of the transient heat conduction equation of the slab.In the following sections after describing the methodology adopted here for the prediction of furnace process within the reheating furnace ,heat transfer characteristics and thermal behavior of

45、 the slab are investigated by changing such parameters as absorption coefficient and emissivity of the slab,while comparison with the experimental data is also presented.Finally,some concluding remarks are given.2 Formulation 2.1 Furnace description The role of the reheating furnace is to heat steel

46、 slabs nearly up to 1200 uniformly for the subsequent rolling process,and the energy for slab heating is supplied by roof and bottom tangential gas.burners.Usually,this reheating furnace is composed of five zones,i.e,non-firing,charging,preheating,and soaking zones as shown in Fig,1,which is the sim

47、plified furnace model similar to the POSCO unit,Steel slabs charged into the non-firing zone are moved on the next fixed beam by a walking beam about every some minutes depending on the residence time of the slab within the furnace.Overall longitudinal furnace dimension is each zone with inclined co

48、nnecting roof and blockshaped bottom hill.Each Steel slab has 1.16 m in width and 0.23 m in height with 0.2m interval between the slabs,so that slabs are assumed to be isothermal of 21.2 when charging into the furnace to exit from the furnace,is typpically 180 min to obtain the mean slab temperature

49、 of about 1200 at the furnace exit,therefore,slabs move to the next location every 4.6 min.2.2 Goering equations Fig.2 shows the heat transfer path occurred within the furnace chamber,in this study,it is assumed that the heat transfer mode to the slab surface is only thermal radiation while only con

50、duction occurs within the slab.Heat transfer within the steel slab can be calculated from the transient two dimensional heat conduction equation as following; 1 Where ,C,and l are density,specific heat,and conductivity of the steel slab,respectively.The radiative heat flux on the slab surface, as sh

51、own in Fig.3,is used for the boundary condition of the above Eq. 1 ,i.e, 2 Where is the radiation intensity at slab surface and direction is the unit normal vector at the slab surface ,and is the solid angle.For a radiatively active medium the radiation intensity at any position F,along a path throu

52、gh an absorbing,emitting and scattering medium can be given by the following RTE: 3 Where is the extinction coefficient, is the scattering albedo and is the scattering phase function of radiative transfer from the incoming direction to the scattering direction .this equation,if the temperature of th

53、e medium and boundary conditions for intensity are given,provides a distribution of the radiation intensity in medium.For a diffusely condition of Eq. 3 can be expressed as the summation of emitted and reflected ones like: 4 Where is the wall emissivity,and is the blackbody of the wall.2.3 Finite vo

54、lume sohation methods The transient heat conduction equation is diseretized by using the finite volume method following the procedure suggested by Patankar 8.A central differencing scheme is used for the diffusion terms is terms in the and directions,while the unsteady term is treated implicitly by

55、using the TDMA algorithm until the temperature field in the slab satisfies the following convergence criterion: 5 Where is the previous iteration value of in the same time level.In order to compute the radiative heat flux on the slab surface expressed in Eq. 2 ,which is the boundary condition of Eq. 1 ,the RTE,Eq. 3 must be analyzed.In this work,the finite volume method for

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論