數(shù)列求和地各種方法_第1頁(yè)
數(shù)列求和地各種方法_第2頁(yè)
數(shù)列求和地各種方法_第3頁(yè)
已閱讀5頁(yè),還剩53頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)列求和的方法教學(xué)目標(biāo)1 熟練掌握等差、等比數(shù)列的前n項(xiàng)和公式.2 掌握非等差、等比數(shù)列求和的幾種常見方法.3 能在具體的問題情境中識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用相關(guān)知識(shí)解決相應(yīng)的問題.教學(xué)內(nèi)容知識(shí)梳理1. 求數(shù)列的前n項(xiàng)和的方法(1) 公式法等差數(shù)列的前n項(xiàng)和公式n aianSn =nai+ 皿丄 d.2等比數(shù)列的前n項(xiàng)和公式(I )當(dāng) q = 1 時(shí),Sn = n a 1 ;(n )當(dāng)q工1時(shí),nSn=a1 anq常見的數(shù)列的前,22八2123n項(xiàng)和:12+n+n=3 ,1+3+5+2+(2n 1)=n(n3+n2n(n 1)2(2) 分組轉(zhuǎn)化法把數(shù)列的每一項(xiàng)分成兩項(xiàng)或幾項(xiàng),使其轉(zhuǎn)化

2、為幾個(gè)等差、等比數(shù)列,再求解.(3) 裂項(xiàng)相消法把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng).(4) 倒序相加法這是推導(dǎo)等差數(shù)列前n項(xiàng)和時(shí)所用的方法,將一個(gè)數(shù)列倒過來排序,如果原數(shù)列相加時(shí),若有公因式可提,并且剩余項(xiàng)的和易于求得,則這樣的數(shù)列可用倒序相加法求和.(5) 錯(cuò)位相減法這是推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,主要用于求an bn的前n項(xiàng)和,其中an和bn分別是等差數(shù)列和等比數(shù)列.(6) 并項(xiàng)求和法一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an= (- 1)nf(n)類型,可采用兩項(xiàng)合并求解.例如,Sn= 100 2 992 + 982 97 2 + +

3、22- 12 = (100 + 99) + (98 + 97) + (2 + 1) = 5 050.2. 常見的裂項(xiàng)公式1(1)-n n 112n + 1);1 _ 1 1 nn1n2 2nn12. (2013 新課標(biāo)全國(guó)n, 17)已知等差數(shù)列an的公差不為零,ai = 25 ,且ai, aii, ai3成等比數(shù)列(1) 求an的通項(xiàng)公式;(2) 求 ai + a4+ a7 + + a3n-2.變式訓(xùn)練i. (20i5 四川,6)設(shè)數(shù)列an(n = i , 2 , 3,)的前n項(xiàng)和Sn滿足Sn= 2an ai,且ai , a2+ i , a3成等差 數(shù)列.(1) 求數(shù)列an的通項(xiàng)公式;i(2

4、) 設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.an2. (20i4 福建,i7)在等比數(shù)列an中,a2 = 3 , a5 = 8i.(i)求 an;設(shè)bn = log 3an ,求數(shù)列bn的前n項(xiàng)和Sn.考點(diǎn)二錯(cuò)位相減法1.( 山東)已知數(shù)列an的前n項(xiàng)和Sn=3 n2+8n ,bn是等差數(shù)列,且anbnbn1.(I)求數(shù)列bn的通項(xiàng)公式;()令 &(a1)n 1n .求數(shù)列Cn的前n項(xiàng)和Tn.(bn 2)n2.(2015 天津,18)已知數(shù)列an滿足an+2= qan(q為實(shí)數(shù),且q 工1), n N*,ai= 1 ,a2 = 2,且a2 +a3,a3+ a4, a4 + a5成等差數(shù)列.(1

5、) 求q的值和an的通項(xiàng)公式;log 2a2n(2) 設(shè)bn =, n N *,求數(shù)列bn的前n項(xiàng)和.a2n 1變式訓(xùn)練1.(2014 江西,17)已知首項(xiàng)都是 1 的兩個(gè)數(shù)列an, bn (bn 工0 , n N*)滿足 anbn+ 1 - an +1 b n + 2bn+ ibn=0.an(1)令Cn=,求數(shù)列Cn的通項(xiàng)公式;bn若bn = 3n-1,求數(shù)列an的前n項(xiàng)和Sn.2.(2014 四川,19)設(shè)等差數(shù)列an的公差為d,點(diǎn)(an, bn)在函數(shù)f(x)= 2x的圖象上(n N*).(1)若a1 = - 2,點(diǎn)(a8, 4b7)在函數(shù)f(x)的圖象上,求數(shù)列an的前n項(xiàng)和Sn ;1

6、an若a1= J函數(shù)f(x)的圖象在點(diǎn)(a2, b2)處的切線在X軸上的截距為2-花,求數(shù)列幾的前n項(xiàng)和Tn.3. (2015 湖北,18)設(shè)等差數(shù)列an的公差為d,前n項(xiàng)和為Sn,等比數(shù)列bn的公比為q,已知bi = ai, b2= 2,q = d , Sio = 100.(1) 求數(shù)列an, bn的通項(xiàng)公式;an(2) 當(dāng)d>1時(shí),記Cn =,求數(shù)列Cn的前n項(xiàng)和Tn.bn4 . (2015 山東,18)設(shè)數(shù)列an的前n項(xiàng)和為Sn已知2Sn = 3n+ 3.(1) 求an的通項(xiàng)公式;(2) 若數(shù)列bn滿足anbn = log 3an,求bn的前n項(xiàng)和Tn.1115.(2015 浙江,

7、17)已知數(shù)列an和bn滿足 a1 = 2, b1 = 1 , an +1 = 2an(n N *), b1+ b2 + 匕彳+一bn23n=bn+1 1(n N *).(1)求 an 與 bn;記數(shù)列anbn的前n項(xiàng)和為Tn,求Tn.6.(2015 湖南,19)設(shè)數(shù)列an的前 n 項(xiàng)和為 Sn,已知 ai= 1, a2= 2,且 an + 2= 3Sn Sn+1 + 3, n N*.(1)證明:an+2 = 3an ;求Sn.考點(diǎn)三分組求和法1. (2015 福建,17)在等差數(shù)列an中,a2 = 4 , a4 + a7 = 15.(1) 求數(shù)列an的通項(xiàng)公式;a 2(2) 設(shè) bn = 2

8、 n + n,求 b1 + b2 + b3 + + b10 的值.n2 + n2. (2014 湖南,16)已知數(shù)列an的前n項(xiàng)和Sn =, n N*.2(1)求數(shù)列an的通項(xiàng)公式;設(shè)bn = 2an + (- 1)nan,求數(shù)列bn的前2n項(xiàng)和.變式訓(xùn)練1.(2014 北京,15)已知an是等差數(shù)列,滿足ai = 3, a4 = 12,數(shù)列bn滿足 bi = 4, b4 = 20,且 bn an為等比數(shù)列.(1) 求數(shù)列an和bn的通項(xiàng)公式; 求數(shù)列bn的前n項(xiàng)和.考點(diǎn)四裂項(xiàng)相消法1. (2015 新課標(biāo)全國(guó)I, 17) Sn為數(shù)列an的前n項(xiàng)和.已知an>0 , a2 + 2an =

9、 4Sn+ 3.(1) 求an的通項(xiàng)公式;1(2) 設(shè)bn =,求數(shù)列bn的前n項(xiàng)和.aan +1a2= 9a2a6.8.2.(2011 新課標(biāo)全國(guó),17)等比數(shù)列an的各項(xiàng)均為正數(shù),且2ai + 3a2= 1 ,(1)求數(shù)列an的通項(xiàng)公式;1設(shè)bn = log 3a1 + log 3a2 + + log 3an,求數(shù)列 的前n項(xiàng)和.bn3. (2015 安徽,18)已知數(shù)列an是遞增的等比數(shù)列,且a a4= 9, a2a3(1)求數(shù)列an的通項(xiàng)公式;an+1設(shè)Sn為數(shù)列an的前n項(xiàng)和,bn=,求數(shù)列bn的前n項(xiàng)和Tn.SnSn+1變式訓(xùn)練1. (2013 江西,16)正項(xiàng)數(shù)列an滿足:a2

10、(2n 1)an 2n = 0.(1)求數(shù)列an的通項(xiàng)公式an;1令bn =,求數(shù)列bn的前n項(xiàng)和Tn.(n + 1) an2. (2013 大綱全國(guó),17)等差數(shù)列an中,a7= 4, a19 = 2a9.(1)求an的通項(xiàng)公式;1設(shè)bn =,求數(shù)列bn的前n項(xiàng)和Sn.nan13.在數(shù)列an中,a1= 1,當(dāng)n >2時(shí),其前n項(xiàng)和Sn滿足S2= an Sn;(1)求Sn的表達(dá)式;Sn設(shè)bn =,求bn的前n項(xiàng)和Tn.2n + 1考點(diǎn)五倒序相加法11122 014已知函數(shù) f(x)=斗(x C R). (1)證明:f(x)+ f(1 -x) = ;若 S= f(2)+ f(2)+ + f

11、(貢),則變式訓(xùn)練4x122 0141. 設(shè) f(x)=市,若 S= f(亦)+ f (亦)+ + f(亦),則 S=考點(diǎn)六并項(xiàng)求和1. (2012 新課標(biāo),16)數(shù)列an滿足 an +1 + ( 1)nan = 2n 1,則an的前 60 項(xiàng)和為2. (2014 山東,19)在等差數(shù)列an中,已知公差 d = 2 , a2是ai與a4的等比中項(xiàng)(1) 求數(shù)列an的通項(xiàng)公式;(2) 設(shè) bn = an n i,記 Tn =一 b 1 + b2 b3+ b4+ ( 1)nbn,求 Tn.2變式訓(xùn)練1.(2014 山東理,19)已知等差數(shù)列an的公差為2,前n項(xiàng)和為Sn,且S1, S2, S4成等

12、比數(shù)列(1) 求數(shù)列an的通項(xiàng)公式;4n(2) 令b n = ( 1) n 1,求數(shù)列b n的前n項(xiàng)和Tn.aan+112. (2013 湖南,15)設(shè)Sn為數(shù)列仙的前n項(xiàng)和,盼(-1)nan-刁,nN*,則:(1) a3 =(2) Si + S2 + Sioo =考點(diǎn)七 數(shù)列| an|的前n項(xiàng)和問題11.(2011 北京 11)在等比數(shù)列an中,若ai = 2,a4= 4,則公比 q =|ai| + ©| + |an| =變式訓(xùn)練1.(2013 浙江,19)在公差為d的等差數(shù)列an中,已知a1= 10,且a1,2a2+ 2 ,5a3成等比數(shù)列.(1)求 d , an;若 d v0,

13、求 |a1| + |a2| + |a3| + + |an|.考點(diǎn)八周期數(shù)列項(xiàng)都等于它的前1. 已知數(shù)列2 008,2 009,1, - 2 008 , - 2 009,這個(gè)數(shù)列的特點(diǎn)是從第二項(xiàng)起,每后兩項(xiàng)之和,則這個(gè)數(shù)列的前2 014項(xiàng)之和S2 014等于()A. 2 008 B. 2 010 C. 1 D . 0變式訓(xùn)練n n1.(2012 福建數(shù)列an的通項(xiàng)公式an = ncosy,其前n項(xiàng)和為Sn,則S2 012等于(A.1 006B.2 012C.503D.0考點(diǎn)九數(shù)列與不等式的應(yīng)用1 . (2014 新課標(biāo)全國(guó)n, 17)已知數(shù)列an滿足a1= 1, an+1 = 3a“ + 1.1

14、(1) 證明an + 是等比數(shù)列,并求an的通項(xiàng)公式;111 3(2) 證明一+ + a1 a2an 212. (2015 浙江,20)已知數(shù)列an滿足 a1 = ;且 an+1 = an a2(n N*).an(1) 證明:1 <<2(n N*);an+1r1Sn1*(2) 設(shè)數(shù)列a的前 n項(xiàng)和為 Sn,證明:<(n N ).2 (n + 2) n 2 (n + 1)2 2 23.(2013 江西,理)正項(xiàng)數(shù)列an的前項(xiàng)和an滿足:Sn (n n 1)Sn (n n) 0(1 )求數(shù)列an的通項(xiàng)公式an ;n 1*5(2)令bn廠2,數(shù)列bn的前n項(xiàng)和為Tn。證明:對(duì)于任意

15、的n N ,都有Tn(n 2) a64變式訓(xùn)練1.(2014 湖北,18)已知等差數(shù)列an滿足:a1 = 2,且a1, a2, as成等比數(shù)列.(1)求數(shù)列an的通項(xiàng)公式;記Sn為數(shù)列an的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60 n + 800 ?若存在,求n的最小值;若不存在,說明理由.2 . (2013 廣東,19)設(shè)數(shù)列an的前n項(xiàng)和為Sn已知ai= 1,(1) 求a2的值;(2) 求數(shù)列an的通項(xiàng)公式;1117(3) 證明:對(duì)一切正整數(shù) n,有一+ + + <.a1 a2an 432Sn12T=an+1 -3n2 -n3,n c NSn(n N*),且2S2, S3,

16、4S4 成等差數(shù)列3. (2013 天津,19)已知首項(xiàng)為;的等比數(shù)列an的前n項(xiàng)和為(1)求數(shù)列an的通項(xiàng)公式;113*證明 Sn+< (n N *).Sn 64. (2014 廣東,19)設(shè)各項(xiàng)均為正數(shù)的數(shù)列an的前n項(xiàng)和為Sn,且Sn滿足S2 (n2 + n 3)Sn 3(n2+ n) =0 , n N*.(1) 求a1的值;(2) 求數(shù)列an的通項(xiàng)公式;1 1 1 1證明:對(duì)一切正整數(shù) n,有+a1 ( a1 +1)a2 (a2+1)an ( an + 1)3答案考點(diǎn)一公式法求和iS6 新課標(biāo)全國(guó)I)已知an是公差為3的等差數(shù)列,數(shù)列bn滿足b匸i , b2 =-,葩+ i+ b

17、n+ i =nb n.(i)求an的通項(xiàng)公式;求bn的前n項(xiàng)和.3n3n2【解析】試題分析:(I)用等菱數(shù)列通項(xiàng)公式求;(ID求出通項(xiàng),再利用等比數(shù)列求和公式來求。試髄解析:由已知,口】爲(wèi)4為=虬久=1=4 =£得昭毎+毎=4命=1屁=£得® = 2所以數(shù)列比是苜頂為2,公差為3的等差數(shù)列,通I頁(yè)公式為叫=3«-1cu)由和心強(qiáng) *,得*=冬 因at (MS苜項(xiàng)為1,公比對(duì)的等比數(shù)列記仮的 前可項(xiàng)和為s.則3考點(diǎn):等差數(shù)列與等比數(shù)列2. (2013 新課標(biāo)全國(guó)n, 17)已知等差數(shù)列an的公差不為零,ai = 25 ,且ai, aii, ai3成等比數(shù)列

18、(1) 求an的通項(xiàng)公式;(2) 求 ai + a4+ a7 + + a3n 2.解(i)設(shè)an的公差為d.由題意,a2i = aiai3,即(ai + 10d)2= ai(ai + 12d).于是 d(2 ai + 25d)= 0.又 ai = 25,所以 d = 0(舍去),d = 2.故 an = 2n + 27.(2)令 Sn = ai + a4 + a7+ a3n-2.由(1)知a3n 2= 6n + 31,故 n 2是首項(xiàng)為25 ,公差為一6的等差數(shù)列nn從而Sn =(a1 + a3n 2) = ( 6n + 56) = 3n 2 + 28n.變式訓(xùn)練1.(2015 四川,16)設(shè)

19、數(shù)列an(n = 1,2,3,)的前 n 項(xiàng)和 Sn滿足 Sn= 2an a1,且 a1 , a2+ 1 , a3成等差(1)求數(shù)列an的通項(xiàng)公式;1設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.an解(1)由已知 Sn = 2 an a1 ,有 an = Sn Sn 1 = 2an 2 an 1(n2),即 an=2an- "n2),從而 a2= 2a1, a3= 2a2= 4a1,又因?yàn)閍1, a2+ 1, a3成等差數(shù)列,即 a1 + a3= 2(a2 + 1),所以 a1 + 4a1 = 2(2 a1 + 1),解得 a1 = 2,所以,數(shù)列an是首項(xiàng)為2,公比為2的等比數(shù)列,故 an =

20、 2n.1 1由(1)得=爲(wèi),an 211 n-1 _1 112 21所以 Tn =一+"7 += 1 .2222門12門1 _22.(2014 福建,17)在等比數(shù)列an中,a2 = 3 , a5 = 81.(1)求 an;設(shè)bn = log 3an,求數(shù)列bn的前n項(xiàng)和Sn.解(1)設(shè)an的公比為q,依題意得aq = 3,a1 = 1 ,4解得a1q4= 81 ,q = 3.因此,an = 3n-1.因?yàn)?bn = log 3an = n- 1 ,n (b1+ bn) n2 n 所以數(shù)列bn的前n項(xiàng)和Sn =.2 2考點(diǎn)二錯(cuò)位相減法1.(2015 山東,理,18)已知數(shù)列an的前

21、n項(xiàng)和Sn=3 n2+8 n ,bn是等差數(shù)列,且anbnbn1.(I)求數(shù)列bn的通項(xiàng)公式;(n)令 cn(a1)n 1n .求數(shù)列Cn的前 n項(xiàng)和Tn.(bn 2)n【答案】(I)63n 1 ; (n) Tn 3n 2n 2.【解析】試題分析:(T)卞融 =錄艮尊差數(shù)列的通碩公式求解!門門根振(I )卻對(duì)列也的通項(xiàng)公式,再月錯(cuò)位彳由曲去柬具前口壩和.試題解析; I )由題意知當(dāng)刃王2吋,込=兀-£*1=6卄廠所以q -6n + 5設(shè)數(shù)列戈的侖差為可,11_坷4彳 硼得玄7廠】7 = 3皿L2 卩(n 1)2 13n 2n 23 44(2n2n 2所以打=知十Ln 1(n)由(I)

22、知(6n Cn6)3(n1) 2n 1,(3n3)n又Tnc1 C2C3Qi?得Tn32223 23424(n1) 2n1,2Tn32233 24425(n1) 2n2,兩式作差,得Tn322223 242n1 (n1) 2n 2所以 Tn 3n 2n 2考點(diǎn):數(shù)列前n項(xiàng)和與第n項(xiàng)的關(guān)系;等差數(shù)列定義與通項(xiàng)公式;錯(cuò)位相減法2.(2015 天津,8)已知數(shù)列an滿足 an+2 = qan(q 為實(shí)數(shù),且 q 胡),n N*, ai = 1 , a2= 2, 且 a2 + a3, a3+ a4, a4 + a5成等差數(shù)列.求q的值和an的通項(xiàng)公式;log 2a2n設(shè)bn=, n N*,求數(shù)列bn的

23、前n項(xiàng)和.a2n 1解 (1)由已知,有 3+ a4) (a2 + a3)= (a4 + a5) (a3 + a4),即 a4 a2 = a5 a3,所以 a2(q 1) = a3(q 1),又因?yàn)?q 工1 ,故 a3 = a2 = 2,由 a3 = a1 q,得 q = 2.n 1當(dāng) n = 2k 1(k N *)時(shí),an = a2k 1 = 2k1 = 2 2 ;n當(dāng) n = 2k(k N*)時(shí),an = a2k = 2k = 22.n 12 2,n為奇數(shù),所以,an的通項(xiàng)公式為an =n22,n為偶數(shù).log 2a2nn由得bn二二不,n N設(shè)bn的前n項(xiàng)和為Sn,1 1 1 1則 S

24、n 二 1 X0 + 2 兮+ 3 號(hào)+十(n - 1)篤二;+ n X2二,1 111 1 1;Sn 二 1 XJ+ 2 紜+ 彳紜+ 1)礦 + n ?.上述兩式相減得:2Sn 二1 2n1 -22n,n + 2整理得,Sn = 4 -戸,n N*.n + 2所以,數(shù)列bn的前n項(xiàng)和為4 217, n N變式訓(xùn)練1 an + 1 bn1.(2014 江西,17)已知首項(xiàng)都是1的兩個(gè)數(shù)列an, bn(bn0, n N*)滿足anbn + 2bn + 1 b n = 0.an(1)令Cn =,求數(shù)列cn的通項(xiàng)公式;bn若bn = 3n 1,求數(shù)列an的前n項(xiàng)和Sn.解 (1)因?yàn)?anbn +

25、 1 an+1bn + 2bn +1bn = 0, bn0(n N*),an+1an所以2,即 Cn + 1 Cn 2.b n+1 b n所以數(shù)列Cn是以1為首項(xiàng),2為公差的等差數(shù)列,故Cn 2n 1.由 bn 3n 1 知 an Cnbn (2n 1)3n 1,于是數(shù)列an的前 n 項(xiàng)和 Sn 1 X30 + 3 X31 + 5 X32+ (2n 1) X3n 1,3Sn 1 X31 + 3 X32+ (2n 3) X3n 1 + (2n 1) 3n,相減得一2Sn 1 + 2 (31 + 32 + + 3n 1) (2n 1) 3n 2 (2n 2)3n, 所以 Sn (n 1)3n +

26、1.2.(2014 四川,19)設(shè)等差數(shù)列an的公差為d,點(diǎn)(an, bn)在函數(shù)f(x) = 2x的圖象上(n N*).若ai = 2,點(diǎn)8, 4b7)在函數(shù)f(x)的圖象上,求數(shù)列an的前n項(xiàng)和Sn;1an若a1 = 1 ,函數(shù)f(x)的圖象在點(diǎn)(a2, b2)處的切線在x軸上的截距為2 ,求數(shù)列l(wèi)n 2bn的前n項(xiàng)和Tn.解(1)由已知得,b7 = 2a7,b8 = 2a8 = 4b7,有 2a8= 4X2a7= 2a7 + 2.解得 d = a8 a7 = 2.n (n 1)所以,Sn =na1+2d=2n + n(n 1)=n2 3n.函數(shù) f(x) = 2x 在(a2,b2)處的切

27、線方程為 y 2a2= (2a2ln 2)( x a2), 1它在x軸上的截距為a2 .ln 21 1由題意得,a2花二2 花解得 a2 = 2.所以 d = a2 a1 = 1.從而 an = n,bn = 2n.1 2 3n 1 n所以T二+尹23 +不+二2Tn=1+2+杰+不1 n1 n 2n+1 n 2因此,2Tn - “1+2+22+1 - 二2 -1 -齊二2n所以,Tn =2n+1 n 22n3.(2015 湖北,18)設(shè)等差數(shù)列an的公差為d,前n項(xiàng)和為Sn,等比數(shù)列bn的公比為q,已知 bi = ai, b2= 2, q = d , S10 = 100.(1)求數(shù)列an,

28、bn的通項(xiàng)公式;an當(dāng)d>1時(shí),記Cn=',求數(shù)列cn的前n項(xiàng)和Tnbn10a1 + 45d = 100 ,解(1)由題意有,a1d = 2,2a1 + 9d = 20 , 即a1d = 2,a1 = 9, a1 = 1 ,解得或 2d = 2 d =一.91 an = 7 (2n + 79 ),an = 2 n 1 ,9故或bn = 2n12 n 1bn = 9 '9.2n 1由 d>1,知 an = 2n 1 , bn= 2n 1,故 Cn=,于是2n 1+ 2 + 22 + 23+ 24 +2 n- 1,2n 3 2n 12Tn = 2 +靈+屋+產(chǎn)+長(zhǎng)+ h

29、 + h可得1 2n 1 2n + 32T二=_+ +2+尹+產(chǎn)2n + 34 . (2015 山東,18)設(shè)數(shù)列an的前n項(xiàng)和為Sn已知2Sn = 3n+ 3.(1) 求an的通項(xiàng)公式;(2) 若數(shù)列bn滿足anbn = log 3an,求bn的前n項(xiàng)和Tn.解因?yàn)?Sn = 3n + 3 ,所以 2a1 = 3 + 3,故 a1 = 3,當(dāng) n > 1 時(shí),2Sn 1 = 3n 1 + 3,此時(shí) 2an = 2Sn 2Sn 1 = 3n 3n 1 = 2 X3n1,即 an= 3n 1,3, n= 1,所以an=“3n 1, n > 1.1 因?yàn)?anbn = log 3an,

30、所以 b1=,3當(dāng) n > 1 時(shí),bn = 31 nlog 33n1= (n 1) 31 n.1所以T1 = b1 =31當(dāng) n > 1 時(shí),Tn = b1 + b2 + b3+-+ bn = _+ (1 X3 1 + 2 X3 2 + + (n 1) X31 n),3所以 3Tn = 1 + (1 X30 + 2 X3 1 + (n 1) X32 n),2兩式相減,得 2Tn = _+ (30+ 3 1 + 3 2+-+ 32n) (n 1) X31 n1 31 n(n 1) X31366n + 32 X3n136n+ 3所以"秒打3經(jīng)檢驗(yàn),n = 1時(shí)也適合.13綜

31、上可得Tn =初-6n + 34 X3n記數(shù)列anbn的前n項(xiàng)和為Tn,求Tn.解 由 ai = 2, an +1 = 2an,得 an = 2n(n N*).由題意知:當(dāng) n = 1 時(shí),bi = b2- 1,故 b2= 2.1當(dāng) n >2 時(shí),bn= bn +1-bn,整理得nbn +1bn= ,所以 bn= n(n N*).n + 1 n(2)由(1)知anbn = n 2n.因此 Tn = 2 + 2 22 + 3 23+ n 2n,2Tn= 22 + 2 23 + 3 24 + + n 2n +1,所以 Tn 2Tn= 2 + 22+ 23+ 2n n 2n+ 1.故 Tn =

32、 (n 1)2 n+1 + 2(n N*).6.(2015 湖南,19)設(shè)數(shù)列an的前 n 項(xiàng)和為 Sn,已知 a1 = 1, a2 = 2,且 an + 2 = 3Sn Sn+1 + 3, n N .(1)證明:an+2 = 3an ;求Sn.(1)證明由條件,對(duì)任意 n N*,有an+ 2 = 3Sn Sn +1 + 3,因而對(duì)任意 n N , n>2,有 an + 1 = 3Sn-1 Sn+ 3.兩式相減,得 an+2 an+1 = 3an an+1,即 an+2 = 3an, n>2.又 a1 = 1 , a2= 2,所以 a3 = 3S1 S2 + 3 = 3a1 (a1

33、 + a2) + 3 = 3a1,故對(duì)一切 n N*, an+2 = 3an.an+2an解 由(1)知,an0,所以 =3.于是數(shù)列a2n1是首項(xiàng)a1 = 1,公比為3等比數(shù)列;數(shù)列a2n是首項(xiàng) a2= 2,公比為3的等比數(shù)列因此a2n-1 = 3n 1, a2n = 2X3n1.于是 S2n = ai + a2+ a2n=(ai + a3+ a2n -1) + (a2 + a4 + + a2n)=(1 + 3 + 3n T) + 2(1 + 3 + + 3n1)3 (3n1)=3(1 + 3 + + 3n1)=23 (3n 1)從而 S2n 1 = S2n a2 n= 2 X3n 123=

34、2(5 X3n21).3n 32 (5 X3廠1),當(dāng)n是奇數(shù), 綜上所述,Sn =3 n2 (3; 1),當(dāng) n是偶數(shù).考點(diǎn)三分組求和法1. (2015 福建,17)在等差數(shù)列an中,a2 = 4 , a4 + a7 = 15.(1) 求數(shù)列an的通項(xiàng)公式;a 2(2) 設(shè) bn = 2 n + n,求 b1 + b2 + b3 + + b10 的值.解(1)設(shè)等差數(shù)列an的公差為d,a1 + d = 4,由已知得 (a1 + 3d) + ( a1 + 6d)= 15 ,a1 = 3,解得d = 1.所以 an= a 1 + (n 1) d = n + 2.由(1)可得bn= 2n+ n,所

35、以 b1 + b2+ b3 + + b10 = (2 + 1) + (22 + 2) + (23 + 3) + (210 + 10)=(2 + 22 + 23+ 210)+ (1 + 2 + 3 + 10)2 (1 210)(1 + 10 )X10+1 2 2=(2 11 2) + 55=211 + 53 = 2 101.n2 + n2. (2014 湖南,16)已知數(shù)列an的前n項(xiàng)和Sn =, n N*.2(1) 求數(shù)列an的通項(xiàng)公式;設(shè)bn = 2an + ( 1)nan,求數(shù)列bn的前2n項(xiàng)和.解(1)當(dāng) n = 1 時(shí),a1 = S1 = 1 ;n2 + n (n 1) 2+( n 1

36、) 當(dāng) n2 時(shí),an = Sn Sn 1 = n.2 2故數(shù)列an的通項(xiàng)公式為an=n.(2) 由(1)知,bn = 2n+ ( 1)nn.記數(shù)列bn的前 2n 項(xiàng)和為 T2n,則 T2n = (21 + 22 + + 22n) + ( 1 + 2 3 + 4+ 2n).記 A = 21 + 22+- + 22n, B= 1 + 2 3 + 4 + 2n ,貝U2 (1 22n) A = 22n + 1 2,1 2B= ( 1 + 2) + ( 3 + 4) + + (2n 1) + 2n = n.故數(shù)列bn的前 2n 項(xiàng)和 T2n= A + B= 22n +1+ n 2.變式訓(xùn)練1. (2

37、014 北京,15)已知an是等差數(shù)列,滿足a1 = 3, a4 = 12,數(shù)列bn滿足 b1 = 4, b4 = 20 ,且bn a"為等比數(shù)列.(1)求數(shù)列an和bn的通項(xiàng)公式;求數(shù)列bn的前n項(xiàng)和.a4 a i 12 3解(1)設(shè)等差數(shù)列an的公差為d,由題意得d=丁= 丁=3.所以 an= ai + (n- 1)d = 3n(n = 1 , 2,).設(shè)等比數(shù)列bn an的公比為q,由題意得b4 a420 12q3 = 8,解得 q = 2.bi ai4 3所以 bn an = (bi ai)qn 1 = 2n 1.從而 bn = 3n + 2n 1(n= 1 , 2,).由知

38、 bn=3n + 2n $ = 1 , 2,).31 2n數(shù)列3 n的前n項(xiàng)和為F(n + 1),數(shù)列2n勺的前n項(xiàng)和為1 x = 2n 1.21 23所以,數(shù)列bn的前n項(xiàng)和為n(n +1) + 2n 1.考點(diǎn)四裂項(xiàng)相消法1. (2015 新課標(biāo)全國(guó)I, 17) Sn為數(shù)列an的前n項(xiàng)和.已知an>0 , a2 + 2an = 4Sn+ 3.(1) 求an的通項(xiàng)公式;1(2) 設(shè)bn =,求數(shù)列bn的前n項(xiàng)和.anan +1解 (1)由 a2 + 2 an = 4 Sn + 3,可知 a2 + 1 + 2 an+1 = 4Sn +1 + 3.可得 a2 + 1 a2 + 2(an+ 1

39、 an) = 4an + 1 , 即2( an+1 + a.) = a2 +1 a2= (an +1 + an )(a n+1 an).由于 an>0,可得 an+1 an = 2.又 a2+ 2a1 = 4a1 + 3 ,解得 ai = 1(舍去),ai= 3.所以an是首項(xiàng)為3,公差為2的等差數(shù)列,通項(xiàng)公式為an = 2n + 1.由an=2n +1可知1(2n + 1)(2n+3)bn =an an+ 11 1 12 2n+ 12n + 3設(shè)數(shù)列bn的前n項(xiàng)和為Tn,則Tn = b1 + b2+ bn1 12n + 12n + 33 ( 2n + 3)a3= 9a2a6.2. (2

40、011 新課標(biāo)全國(guó),17)等比數(shù)列an的各項(xiàng)均為正數(shù),且2a1 + 3a2= 1 ,(1)求數(shù)列an的通項(xiàng)公式;1設(shè)bn = log 3a1 + log 3a2 + + log 3an,求數(shù)列 的前n項(xiàng)和. bn解(1)設(shè)數(shù)列an的公比為q.由 a由條件可知q>0,故q = 3.由 2a1 + 3a2 = 1 得 2a1 + 3a1 q = 1 , 1所以a1 = : = 9a2a6,得 a3 = 9a2,1所以q2=91故數(shù)列an的通項(xiàng)公式為an= .3 n(2) bn = log 3ai + log 3a2+ log 3an=(1 + 2 + + n)n (n + 1)= 21211

41、故 =_ 2( _),bnn (n +1 )nn + 11 11111+ + +一 _2 1 _+ .+b1 b2bn2231 12nn n + 1n + 112n所以數(shù)列的前n項(xiàng)和為一bnn +13. (2015 安徽,18)已知數(shù)列an是遞增的等比數(shù)列,且ai + a4= 9, a2a3 = 8.(1)求數(shù)列an的通項(xiàng)公式;an + 1 設(shè)Sn為數(shù)列an的前n項(xiàng)和,bn=,求數(shù)列bn的前n項(xiàng)和Tn.SnSn+1解 (1)由題設(shè)知a1 a4= a2 a3 = 8.a1 = 1, a1 = 8 ,又a1 + a4= 9可解得或(舍去).a4= 8a4= 1由 a4 = a1q3 得公比 q =

42、 2,故 an = a1qn 1 = 2n_ 1a1 (1 qn) Sn=廠=2n- 1,又bn =an +1SnSn + 1Sn + 1 Sn 1SnSn+1Sn1Sn+ 11 1 1=1 S1Sn+ 12n + 1 11111 11所以 Tn = b1 + b2 + + bn= S1 - S2 + 匸 S3 + sn -家變式訓(xùn)練1. (2013 江西,16)正項(xiàng)數(shù)列an滿足:a1n= 1 = n+12 ( n+ 1)2. (2013 大綱全國(guó),17)等差數(shù)列an中,a7= 4, a19 = 2a9.(1)求an的通項(xiàng)公式;1設(shè)bn =,求數(shù)列bn的前n項(xiàng)和Sn.nan解(1)設(shè)等差數(shù)列a

43、n的公差為d,則an = a1 + (n 1)d . (2n 1)an 2n = 0.(1)求數(shù)列an的通項(xiàng)公式an;1令bn =,求數(shù)列bn的前n項(xiàng)和Tn.(n + 1) an解(1)由 a2 (2 n 1) an 2n = 0,得(an 2n )(a n+ 1) = 0.由于an是正項(xiàng)數(shù)列,所以 an= 2n.1由 an= 2n,bn= ( n+ 1) an1貝y bn =2n (n + 1)1 1 1 1 11112 1 2 + 2 3 + + L + n+a7= 4,ai + 6d = 4,得ai9 = 2a9,ai + 18 d = 2 (ai + 8d),1解得 ai = 1 ,

44、d =an的通項(xiàng)公式為an =2n (n+ 1)1(2) Tb n =nan2222222n Sn=_ + _ +=1223nn +1 n +113.在數(shù)列an中,a1= 1,當(dāng)n >2時(shí),其前n項(xiàng)和Sn滿足S= an Sn?(1) 求Sn的表達(dá)式;Sn(2) 設(shè)bn =,求bn的前n項(xiàng)和Tn.2n + 1答案(1 ) n 2,an Sn Sn 1可求得Sn2n 1n2n 1考點(diǎn)五倒序相加法1 11.已知函數(shù) f(x)=(x R).證明:f(x) + f(1 x)= ;4%+ 2''2變式訓(xùn)練S=4x122 0141.設(shè)f(x)=兀,若S=f(亦)+f(砧)+f(砧),則

45、考點(diǎn)六并項(xiàng)求和1. (2012 新課標(biāo),16)數(shù)列an滿足 an+1 + ( 1)nan = 2n 1,則an的前 60 項(xiàng)和為.理科解析 當(dāng) n = 2k 時(shí),a2k+1 + a2k = 4k一 1,當(dāng) n = 2k一 1 時(shí),a2k一 a2k 1 = 4k一3,.a2k+1 + a2k 1 = 2, -a2k+3 + a2k+1 = 2, -a2k 1 = a2k+ 3, -a1 = as = = a61. 心1 + a2 + a3 + +30 x(3+ 119 )a60 = (a2 + a3)+ (a4+ as)+ (a60 + a61)= 3 + 7 + 11 + (2 X60 1)=

46、30 X61 = 1 830.答案 1 830文科解析Tan+1 + ( 1)nan = 2n 1 ,a2= 1 + ai, a3 = 2 ai, a4 = 7 ai , a5= ai,a69 + a 1, a72 a1, a 815 a1, a9 a1,a10 = 17 + a1 , an = 2 a1, a12 = 23 a1,,a57 = a1, a58 = 113 + a1, a59 = 2 a1, a60 = 119 a 1,/a1 + a2+ a60 = (a1 + a2+ a3 + a4)+ (a5 + a6 + a7+ a8)+ + (a57 + a58 + a59 + a6o

47、)15 X(10 + 234 )=10 + 26 + 42 + 234 = 1 830.2答案 D2. (2014 山東,19)在等差數(shù)列an中,已知公差 d = 2 , a2是a1與a4的等比中項(xiàng).(1) 求數(shù)列an的通項(xiàng)公式;(2) 設(shè) bn = ann 1,記 Tn = b 1 + b2 b3 + b4 + ( 1)nbn,求 Tn.2解 (1)由題意知(a1 + d)2 = a1(a1 + 3d),即(a1 + 2)2 = a1(a1 + 6),解得a1 = 2.所以數(shù)列an的通項(xiàng)公式為an= 2n.n (n+ 1)由題意知b n = a= n(n +1).2所以 Tn = 1 X2

48、+ 2X3 3 X4 + + ( 1)nn x(n +1).因?yàn)?bn +1 bn = 2( n + 1),可得當(dāng)n為偶數(shù)時(shí),Tn= ( b1 + b2)+ ( b3 + b4) + + ( bn 1 + bn)=4 + 8 +12 + + 2nn'(4 + 2n)22n (n + 2)當(dāng)n為奇數(shù)時(shí),Tn= Tn - 2 n(n + 1)(n +1) 2 + ( bn)(n+ 1) 2n為偶數(shù).所以Tn =n (n + 2)(n 1)( n + 1)變式訓(xùn)練1.(2014 山東理,19)已知等差數(shù)列an的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列.(1)求數(shù)列an的通項(xiàng)公式;4n令bn= ( 1)n 1,求數(shù)列bn的前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論