高等數(shù)學(xué)同濟版泰勒公式ppt課件_第1頁
高等數(shù)學(xué)同濟版泰勒公式ppt課件_第2頁
高等數(shù)學(xué)同濟版泰勒公式ppt課件_第3頁
高等數(shù)學(xué)同濟版泰勒公式ppt課件_第4頁
高等數(shù)學(xué)同濟版泰勒公式ppt課件_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、二、幾個初等函數(shù)的麥克勞林公式二、幾個初等函數(shù)的麥克勞林公式 第三節(jié)一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的應(yīng)用三、泰勒公式的應(yīng)用 應(yīng)用用多項式近似表示函數(shù)理論分析近似計算泰勒 ( Taylor )公式 第三章 1. 求求 n 次近似多項式次近似多項式)(xpn, )()(00 xfxpn, )()(00 xfxpn)()(,0)(0)(xfxpnnn0annxxaxxaxxa)()()(0202012. 余項及誤差估計余項及誤差估計:)()()(xpxfxRnn(稱為余項) | )()(| )(|xpxfxRnn(稱為誤差) s.t.一、泰勒公式的建立一、泰勒公式的建立如何提高精度

2、 ?如何估計誤差 ?公式 稱為 的 n 階泰勒公式 .)(xf公式 稱為n 階泰勒公式的拉格朗日余項 .泰勒泰勒Taylor中值定理中值定理 :內(nèi)具有的某開區(qū)間在包含若),()(0baxxf1n直到階的導(dǎo)數(shù) ,),(bax時, 有)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中10)1()(! ) 1()()(nnnxxnfxR則當(dāng))0(之間與在xx 泰勒英)泰勒英) (1685 1731) 佩亞諾Peano余項 麥克勞林Maclaurin公式麥克勞林麥克勞林 (英)(英) (1698 1746) 佩亞諾佩亞諾 (意大利)(意大利

3、) (1858 1932)二、幾個初等函數(shù)的麥克勞林公式二、幾個初等函數(shù)的麥克勞林公式xexf)() 1 (,)()(xkexf),2, 1(1)0()(kfkxe1x!33x!nxn)(xRn!22x其中)(xRn! ) 1( n) 10(1nxxe)sin( xxxfsin)()2()()(xfkxsinx!33x!55x! ) 12(12mxm)(2xRm其中)(2xRm)sin(212mx2k2sin)0()(kfkmk2,012 mk,) 1(1m),2, 1(m1) 1(m) 10(12mx! ) 12(m)cos() 1(xm! )2(2mxmxxfcos)()3(類似可得xco

4、s1!22x!44x)(12xRm其中)(12xRm! )22(m)cos() 1(1xm) 10(m) 1(22mx) 1()1 ()()4(xxxf)()(xfk)1 (x1x2xnx)(xRn其中)(xRn11)1 (! ) 1()() 1(nnxxnn) 10(kxk)1)(1() 1() 1() 1()0()(kfk),2, 1(k!2 ) 1(! n) 1() 1(n) 1()1ln()()5(xxxf知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1 (1) 1(nnnxxn) 10(1) 1(n類似可得)()(xfkkkxk)1 (! ) 1() 1(1),2,

5、 1(k三、泰勒公式的應(yīng)用三、泰勒公式的應(yīng)用1. 在近似計算中的應(yīng)用在近似計算中的應(yīng)用 (例(例1) 2. 利用泰勒公式求極限例利用泰勒公式求極限例2)3. 利用泰勒公式證明不等式例利用泰勒公式證明不等式例3)知例例1. 計算無理數(shù)計算無理數(shù) e 的近似值的近似值 , 使誤差不超過使誤差不超過.106解解:xe! ) 1( nxe1nx令 x = 1 , 得e) 10(! ) 1(!1!2111nen) 10(由于, 30ee欲使) 1 (nR!) 1(3n610由計算可知當(dāng) n = 9 時上式成立 ,因而e!91!2111718281. 2xe1x!33x!nxn!22x的麥克勞林公式為例例

6、2. 求求.43443lim20 xxxx解解:由于x431243 x21)1 (243x 2)(14321x!21) 1(2121243)( x)(2xo用洛必塔法則不方便 !2x用泰勒公式將分子展到項,11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(x3421)1 (243x220 limxx 原式)(2216921xox 329x43)(2216941xox 2x43)(2216941xox 11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(例例3.

7、證明證明).0(82112xxxx證證:21)1 (1xx21x2) 121(21!21x325)1)(221)(121(21!31xx) 10(3225)1 (161821xxxx)0(82112xxxx內(nèi)容小結(jié)內(nèi)容小結(jié)1. 泰勒公式泰勒公式其中余項)(0nxxo當(dāng)00 x時為麥克勞林公式 .)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn10)1()(! ) 1()()(nnnxxnfxR)0(之間與在xx2. 常用函數(shù)的麥克勞林公式常用函數(shù)的麥克勞林公式,xe, )1ln(x,sin x,cosx)1 (x3. 泰勒公式的應(yīng)用泰勒公式的應(yīng)用(1) 近似計算(2) 其他應(yīng)用求極限 , 證明不等式 等.作業(yè)作業(yè) P145 5 7 8 10 (1) (2)思考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論