數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)_第1頁(yè)
數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)_第2頁(yè)
數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)_第3頁(yè)
數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)_第4頁(yè)
數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)_第5頁(yè)
已閱讀5頁(yè),還剩47頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)專業(yè)英語(yǔ)(吳炯圻)NewWords&Expressions:algebra代數(shù)學(xué)geometrical幾何的algebraic代數(shù)的identity恒等式arithmetic算術(shù),算術(shù)的measure測(cè)量,測(cè)度axiom公理numerical數(shù)值的,數(shù)字的conception概念)觀點(diǎn)operation運(yùn)算constant常數(shù)postulate公設(shè)logicaldeduction邏輯推理proposition命題division除)除法subtraction減)減法formula公式term項(xiàng))術(shù)語(yǔ)trigonometry三角學(xué)variable變化的)變量2.1數(shù)學(xué)、方程與比例Ma

2、thematics,EquationandRatio5Mathematicscomesfrommanssocialpractice,forexample,industrialandagriculturalproduction,commercialactivities,militaryoperationsandscientificandtechnologicalresearches.1AWhatismathematics數(shù)學(xué)來(lái)源于人類的社會(huì)實(shí)踐,比如工農(nóng)業(yè)生產(chǎn),商業(yè)活動(dòng),軍事行動(dòng)和科學(xué)技術(shù)研究。Andinturn,mathematicsservesthepracticeandplaysagrea

3、troleinallfields.Nomodernscientificandtechnologicalbranchescouldberegularlydevelopedwithouttheapplicationofmathematics.反過(guò)來(lái),數(shù)學(xué)服務(wù)于實(shí)踐,并在各個(gè)領(lǐng)域中起著非常重要的作用。沒(méi)有應(yīng)用數(shù)學(xué),任何一個(gè)現(xiàn)在的科技的分支都不能正常發(fā)展。5Fromtheearlyneedofmancametheconceptsofnumbersandforms.Then,geometrydevelopedoutofproblemsofmeasuringland,andtrigonometrycame

4、fromproblemsofsurveying.Todealwithsomemorecomplexpracticalproblems,manestablishedandthensolvedequationwithunknownnumbers,thusalgebraoccurred.很早的時(shí)候,人類的需要產(chǎn)生了數(shù)和形的概念。接著,測(cè)量土地問(wèn)題形成了幾何學(xué),測(cè)量問(wèn)題產(chǎn)生了三角學(xué)。為了處理更復(fù)雜的實(shí)際問(wèn)題,人類建立和解決了帶未知數(shù)的方程,從而產(chǎn)生了代數(shù)學(xué)。Before17thcentury,manconfinedhimselftotheelementarymathematics,i.e.,geome

5、try,trigonometryandalgebra,inwhichonlytheconstantsareconsidered.17世紀(jì)前,人類局限于只考慮常數(shù)的初等數(shù)學(xué),即幾何學(xué),三角學(xué)和代數(shù)學(xué)。6Therapiddevelopmentofindustryin17thcenturypromotedtheprogressofeconomicsandtechnologyandrequireddealingwithvariablequantities.Theleapfromconstantstovariablequantitiesbroughtabouttwonewbranchesofmathem

6、atics-analyticgeometryandcalculus,whichbelongtothehighermathematics.17世紀(jì)工業(yè)的快速發(fā)展推動(dòng)了經(jīng)濟(jì)技術(shù)的進(jìn)步,從而遇到需要處理變量的問(wèn)題。從常量到變量的跳躍產(chǎn)生了兩個(gè)新的數(shù)學(xué)分支-解析幾何和微積分,他們都屬于高等數(shù)學(xué)。Nowtherearemanybranchesinhighermathematics,amongwhicharemathematicalanalysis,higheralgebra,differentialequations,functiontheoryandsoon.現(xiàn)在高等數(shù)學(xué)里面有很多分支,其中有數(shù)學(xué)分析

7、,高等代數(shù),微分方程,函數(shù)論等。7Mathematiciansstudyconceptionsandpropositions,Axioms,postulates,definitionsandtheoremsareallpropositions.Notationsareaspecialandpowerfultoolofmathematicsandareusedtoexpressconceptionsandpropositionsveryoften.數(shù)學(xué)家研究的是概念和命題,公理,公設(shè),定義和定理都是命題。符號(hào)是數(shù)學(xué)中一個(gè)特殊而有用的工具,常用于表達(dá)概念和命題。Formulasfiguresand

8、chartsarefullofdifferentsymbols.SomeofthebestknownsymbolsofmathematicsaretheArabicnumerals1,2,3,4,5,6,7,8,9,0andthesignsofaddition"+”,subtraction"-”,IgI.(、/,I(,multiplicationx,division+andequality"=”.公式,圖形和圖表都是不同的符號(hào).8Theconclusionsinmathematicsareobtainedmainlybylogicaldeductionsandco

9、mputation.Foralongperiodofthehistoryofmathematics,thecentricplaceofmathematicsmethodswasoccupiedbythelogicaldeductions.數(shù)學(xué)結(jié)論主要由邏輯推理和計(jì)算得到。在數(shù)學(xué)發(fā)展歷史的很長(zhǎng)時(shí)間內(nèi),邏輯推理一直占據(jù)著數(shù)學(xué)方法的中心地位。Now,sinceelectroniccomputersaredevelopedpromptlyandusedwidely,theroleofcomputationbecomesmoreandmoreimportant.Inourtimes,computatio

10、nisnotonlyusedtodealwithalotofinformationanddata,butalsotocarryoutsomeworkthatmerelycouldbedoneearlierbylogicaldeductions,forexample,theproofofmostofgeometricaltheorems.現(xiàn)在,由于電子計(jì)算機(jī)的迅速發(fā)展和廣泛使用,計(jì)算機(jī)的地位越來(lái)越重要。現(xiàn)在計(jì)算機(jī)不僅用于處理大量的信息和數(shù)據(jù),還可以完成一些之前只能由邏輯推理來(lái)做的工作,例如,證明大多數(shù)的幾何定理。9回顧:1 .如果沒(méi)有運(yùn)用數(shù)學(xué),任何一個(gè)科學(xué)技術(shù)分支都不可能正常的發(fā)展。2 .符號(hào)在

11、數(shù)學(xué)中起著非常重要的作用,它常用于表示概念和命題。1AWhatismathematics10Anequationisastatementoftheequalitybetweentwoequalnumbersornumbersymbols.1 BEquation等式是關(guān)于兩個(gè)數(shù)或者數(shù)的符號(hào)相等的一種描述。Equationareoftwokinds-identitiesandequationsofcondition.Anarithmeticoranalgebraicidentityisanequation.Insuchanequationeitherthetwomembersarealike,or

12、becomealikeontheperformanceoftheindicatedoperation.等式有兩種一恒等式和條件等式。算術(shù)或者代數(shù)恒等式都是等式。這種等式的兩端要么一樣,要么經(jīng)過(guò)執(zhí)行指定的運(yùn)算后變成一樣。11Anidentityinvolvinglettersistrueforanysetofnumericalvaluesofthelettersinit.含有字母的恒等式對(duì)其中字母的任一組數(shù)值都成立。Anequationwhichistrueonlyforcertainvaluesofaletterinit,orforcertainsetsofrelatedvaluesoftwo

13、ormoreofitsletters,isanequationofcondition,orsimplyanequation.Thus3x-5=7istrueforx=4only;and2x-y=10istrueforx=6andy=2andformanyotherpairsofvaluesforxandy.一個(gè)等式若僅僅對(duì)其中一個(gè)字母的某些值成立,或?qū)ζ渲袃蓚€(gè)或者多個(gè)字母的若干組相關(guān)的值成立,則它是一個(gè)條件等式,簡(jiǎn)稱方程。因此3x-5=7僅當(dāng)x=4時(shí)成立)而2x-y=0)當(dāng)x=6,y=2時(shí)成立,且對(duì)x,y的其他許多對(duì)值也成立。12Arootofanequationisanynumberornu

14、mbersymbolwhichsatisfiestheequation.Toobtaintherootorrootsofanequationiscalledsolvinganequation.方程的根是滿足方程的任意數(shù)或者數(shù)的符號(hào)。求方程根的過(guò)程被稱為解方程。Therearevariouskindsofequations.Theyarelinearequation,quadraticequation,etc.方程有很多種,例如:線性方程,二次方程等。13Tosolveanequationmeanstofindthevalueoftheunknownterm.Todothis,wemust,of

15、course,changethetermsaboutuntiltheunknowntermstandsaloneononesideoftheequation,thusmakingitequaltosomethingontheotherside.Wethenobtainthevalueoftheunknownandtheanswertothequestion.解方程意味著求未知項(xiàng)的值,為了求未知項(xiàng)的值,當(dāng)然必須移項(xiàng),直到未知項(xiàng)單獨(dú)在方程的一邊,令其等于方程的另一邊,從而求得未知項(xiàng)的值,解決了問(wèn)題。Tosolvetheequation,therefore,meanstomoveandchanget

16、hetermsaboutwithoutmakingtheequationuntrue,untilonlytheunknownquantityisleftononeside,nomatterwhichside.因此解方程意味著進(jìn)行一系列的移項(xiàng)和同解變形,直到未知量被單獨(dú)留在方程的一邊,無(wú)論那一邊。14Equationsareofverygreatuse.Wecanuseequationsinmanymathematicalproblems.Wemaynoticethatalmosteveryproblemgivesusoneormorestatementsthatsomethingisequal

17、tosomething,thisgivesusequations,withwhichwemayworkifweneedto.方程作用很大,可以用方程解決很多數(shù)學(xué)問(wèn)題。注意到幾乎每一個(gè)問(wèn)題都給出一個(gè)或多個(gè)關(guān)于一個(gè)事情與另一個(gè)事情相等的陳述,這就給出了方程,利用該方程,如果我們需要的話,可以解方程。NewWords&Expressions:numerical數(shù)值的)數(shù)的position位置,狀態(tài)cuben.立方體cylindern.柱體geometrical幾何的spheren.球cone圓錐triangle三角形surface面)plane平面straightline段brokenlin

18、e曲面pyramid菱形solid立體)立體的直線linesegment直線equidistant2.2幾何與三角折線ray射線等距離的curve曲線,彎曲GeometryandTrigonology1NewWords&Expressions:side邊angle角radius(radii)半徑diameter直徑endpoint端點(diǎn)circle圓周)圓semicircleminorarc半圓劣弧acuteangle銳角hypotenuse斜邊arc弧majorarc優(yōu)弧rightangleadjacentside直角鄰邊chord弦2circumference周長(zhǎng)Manyleadin

19、ginstitutionslearninghaverecognizedbenefitscanbegainedbyallthatofhigherpositivewhostudythisbranchofmathematics.2 AWhystudygeometry?許多居于領(lǐng)導(dǎo)地位的學(xué)術(shù)機(jī)構(gòu)承認(rèn),所有學(xué)習(xí)這個(gè)數(shù)學(xué)分支的人都將得到確實(shí)的受益。Thisisevidentfromthefactthattheyrequirestudyofgeometryasaprerequisitetomatriculationinthoseschools.許多學(xué)校把幾何的學(xué)習(xí)作為入學(xué)考試的先決條件,從這一點(diǎn)上可以證明。

20、3GeometryhaditsoriginlongagointhemeasurementbytheBabyloniansandEgyptiansoftheirlandsinundatedbythefloodsoftheNileRiver.幾何學(xué)起源于很久以前巴比倫人和埃及人測(cè)量他們被尼羅河洪水淹沒(méi)的土地。Thegreekwordgeometryisderivedfromgeo,meaning“earth“andmetron,meaning«力measure.希臘語(yǔ)幾何來(lái)源于geo,意思是”土地工和metron意思是”測(cè)量4Asearlyas2000B.C.wefindthelands

21、urveyorsofthesepeoplere-establishingvanishinglandmarksandboundariesbyutilizingthetruthsofgeometry.公元前2000年之前,我們發(fā)現(xiàn)這些民族的土地測(cè)量者利用幾何知識(shí)重新確定消失了的土地標(biāo)志和邊界。Oneofthemostimportantobjectivesderivedfromastudyofgeometryismakingthestudentbemorecriticalinhislistening,readingandthinking.Instudyinggeometryheisledawayfr

22、omthepracticeofblindacceptanceofstatementsandideasandistaughttothinkclearlyandcriticallybeforeformingconclusions.幾何的學(xué)習(xí)使學(xué)生在思考問(wèn)題時(shí)更周密、審慎,他們將不會(huì)盲目接受任何結(jié)論.5Asolidisathree-dimensionalfigure.Commoiexamplesofsolidsarecube,sphere,cylinder,coneandpyramid.2BSomegeometricalterms立體是一個(gè)三維圖形,立體常見(jiàn)的例子是立方體,球體,柱體,圓錐和棱錐。A

23、cubehassixfaceswhicharesmoothandflat.Thesefacesarecalledplanesurfacesorsimplyplanes.立方體有6個(gè)面,都是光滑的和平的,這些面被稱為平面曲面或者簡(jiǎn)稱為平面。6Aplanesurfacehastwodimensions,lengthandwidth.Thesurfaceofablackboardorofatabletopisanexampleofaplanesurface.平面曲面是二維的,有長(zhǎng)度和寬度,黑板和桌子上面的面都是平面曲面的例子。Acircleisaclosedcurvelyinginoneplane,

24、allpointsofwhichareequidistantfromafixedpointcalledthecenter.平面上的閉曲線當(dāng)其中每點(diǎn)到一個(gè)固定點(diǎn)的距離均相當(dāng)時(shí)叫做圓。固定點(diǎn)稱為圓心。7Alinesegmentdrawnfromthecenterofthecircletoapointonthecircleisaradiusofthecircle.Thecircumferenceisthelengthofacircle.經(jīng)過(guò)圓心且其兩個(gè)端點(diǎn)在圓周上的線段稱為這個(gè)園的直徑,這條曲線的長(zhǎng)度叫做周長(zhǎng)。Oneofthemostimportantapplicationsoftrigonomet

25、ryisthesolutionoftriangles.Letusnowtakeupthesolutiontorighttriangles.三角形最重要的應(yīng)用之一是解三角形,現(xiàn)在我們來(lái)解直角三角形。8Atriangleiscomposedofsixpartsthreesidesandthreeangles.Tosolveatriangleistofindthepartsnotgiven.一個(gè)三角形由6個(gè)部分組成,三條邊和三只角。解一個(gè)三角形就是要求出未知的部分。Atrianglemaybesolvedifthreeparts(atleastoneoftheseisaside)aregiven.A

26、righttrianglehasoneangle,therightangle,alwaysgiven.Thusarighttrianglecanbesolvedwhentwosides,oronesideandanacuteangle,aregiven.如果三角形的三個(gè)部分(其中至少有一個(gè)為邊)為已知,則此三角形就可以解出。直角三角形的一只角,即直角,總是已知的。因此,如果它的兩邊,或一邊和一銳角為已知,則此直角三角形可解。NewWords&Expressions:brace大roster名冊(cè)consequence 結(jié)論) 推論notation枚舉法designate標(biāo)記)指定除,否決

27、diagram圖形,圖解distinct互不相同的underlyingset基礎(chǔ)集distinguish區(qū)別)辨別set全集divisible可被validity有效性dummy啞的)啞變量括號(hào)rosterrule out 排subset 子集 theuniversal除 盡 的visual 可視的evenintegervisualize可視化irrelevant無(wú)關(guān)緊要的voidset(emptyset)空集2.3集合論的基本概念BasicConceptsoftheTheoryofSets1Theconceptofasethasbeenutilizedsoextensivelythrough

28、outmodernmathematicsthatanunderstandingofitisnecessaryforallcollegestudents.Setsareameansbywhichmathematicianstalkofcollectionsofthingsinanabstractway.3 ANotationsfordenotingsets集合論的概念已經(jīng)被廣泛使用,遍及現(xiàn)代數(shù)學(xué),因此對(duì)大學(xué)生來(lái)說(shuō),理解它的概念是必要的。集合是數(shù)學(xué)家們用抽象的方式來(lái)表述一些事物的集體的工具。Setsusuallyaredenotedbycapitalletters;elementsaredesig

29、natedbylower-caseletters.集合通常用大寫字母表示,元素用小寫字母表示。2Weusethespecialnotationtomeanthat“xisanelementofS”or“xbelongstoS”.IfxdoesnotbelongtoS,wewrite.我們用專用記號(hào)來(lái)表示x是S的元素或者x屬于So如果x不屬于S,我們記為。Whenconvenient,weshalldesignatesetsbydisplayingtheelementsinbraces;forexample,thesetofpositiveevenintegerslessthan10isdisp

30、layedas2,4,6,8whereasthesetofallpositiveevenintegersisdisplayedas2,4,6,thethreedotstakingtheplaceof“andsoon.”如果方便,我們可以用在大括號(hào)中列出元素的方式來(lái)表示集合。例如,小于10的正偶數(shù)的集合表示為2,4,6,8,而所有正偶數(shù)的集合表示為2,4,6,三個(gè)圓點(diǎn)表示“等等”。3Thedotsareusedonlywhenthemeaningof“andsoon“isclear.Themethodoflistingthemembersofasetwithinbracesissometimes

31、referredtoastherosternotation.只有當(dāng)省略的內(nèi)容清楚時(shí)才能使用圓點(diǎn)。在大括號(hào)中列出集合元素的方法有時(shí)被歸結(jié)為枚舉法。Thefirstbasicconceptthatrelatesonesettoanotherisequalityofsets:聯(lián)系一個(gè)集合與另一個(gè)集合的第一個(gè)基本概念是集合相等。4DEFINITIONOFSETEQUALITYTwosetsAandaresaidtobeequal(oridentical)iftheyconsistofexactlythesameelements,inwhichcasewewriteA=B.Ifoneofthesetsc

32、ontainsanelementnotintheother,wesaythesetsunequalandwewriteA力B.集合相等的定義如果兩個(gè)集合A和B確切包含同樣的元素,則稱二者相等,此時(shí)記為A=B如果一個(gè)集合包含了另一個(gè)集合以外的元素,則稱二者不等,記為AwBo5EXAMPLE.Accordingtothisdefinition,thetwosets2,4,6,8and2,8,6,4areequalsincetheybothconsistofthefourintegers2,4,6and8.Thus,whenweusetherosternotationtodescribeaset,t

33、heorderinwhichtheelementsappearisirrelevant.根據(jù)這個(gè)定義,兩個(gè)集合2,4,6,8和2,8,6,4是相等的,因?yàn)樗麄兌及怂膫€(gè)整數(shù)2,4,6,8。因此,當(dāng)我們用枚舉法來(lái)描述集合的時(shí)候,元素出現(xiàn)的次序是無(wú)關(guān)緊要的。6EXAMPLE2.Thesets2,4,6,8and2,2,4,4,6,8areequaleventhough,inthesecondset,eachoftheelements2and4islistedtwice.Bothsetscontainthefourelements2,4,6,8andnoothers;therefore,thede

34、finitionrequiresthatwecallthesesetsequal.例2.集合2,4,6,8和2,2,4,4,6,8也是相等的,雖然在第二個(gè)集合中,2和4都出現(xiàn)兩次。兩個(gè)集合都包含了四個(gè)元素2,4,6,8,沒(méi)有其他元素,因此,依據(jù)定義這兩個(gè)集合相等。Thisexampleshowsthatwedonotinsistthattheobjectslistedintherosternotationbedistinct.AsimilarexampleisthesetoflettersinthewordMississippi,whichisequaltothesetM,i,s,p,cons

35、istingofthefourdistinctlettersM,i,s,andp.這個(gè)例子表明我們沒(méi)有強(qiáng)調(diào)在枚舉法中所列出的元素要互不相同。一個(gè)相似的例子是,在單詞Mississippi中字母的集合等價(jià)于集合M,i,s,p,其中包含了四個(gè)互不相同的字母M,i,s,和p.7FromagivensetSwemayformnewsets,calledsubsetsofS.Forexample,thesetconsistingofthosepositiveintegerslessthan10whicharedivisibleby4(theset4,8)isasubsetofthesetofalleve

36、nintegerslessthan10.Ingeneral,wehavethefollowingdefinition.3BSubsets一個(gè)給定的集合S可以產(chǎn)生新的集合,這些集合叫做S的子集。例如,由可被4除盡的并且小于10的正整數(shù)所組成的集合是小于10的所有偶數(shù)所組成集合的子集。一般來(lái)說(shuō),我們有如下定義。8In all our applications of set theory, we have a fixed set S given in advance, and we are concerned only with subsets of given set. The underlyin

37、g set S mayvary one application to another; it will referred to as the universal set of eachthisfrombeparticular discourse.(35頁(yè)第二段)當(dāng)我們應(yīng)用集合論時(shí),總是事先給定一個(gè)固定的集合S,而我們只關(guān)心這個(gè)給定集合的子集?;A(chǔ)集可以隨意改變,可以在每一段特定的論述中表示全集。9set, and will be Wewill consider (35頁(yè)第三段) 這種情況是有可能Itispossibleforasettocontainnoelementswhatever.Thi

38、ssetiscalledtheemptysetorthevoiddenotedbythesymboltobeasubsetofeveryset.一個(gè)集合中不包含任何元素,的。這個(gè)集合被叫做空集,用符號(hào)表示??占侨魏渭系淖蛹?。Somepeoplefindithelpfultothinkofasetasanalogoustoacontainer(suchasabagorabox)containingcertainobjects,itselements.Theemptysetisthenanalogoustoanemptycontainer.一些人認(rèn)為這樣的比喻是有益的,集合類似于容器(如背包和

39、盒子)裝有某些東西那樣,包含它的元素。10Toavoidlogicaldifficulties,wemustdistinguishbetweentheelementsxandthesetxwhoseonlyelementisx.Inparticular,theemptysetisnotthesameastheset.(35頁(yè)第四段)為了避免遇到邏輯困難,我們必須區(qū)分元素x和集合x(chóng),集合x(chóng)中的元素是x。特別要注意的是空集和集合是不同的。Infact,theemptysetcontainsnoelements,whereasthesethasoneelement.Setsconsistingofe

40、xactlyoneelementaresometimescalledone-elementsets.事實(shí)上,空集不含有任何元素,而有一個(gè)元素。由一個(gè)元素構(gòu)成的集合有時(shí)被稱為單元素集。11Diagramsoftenhelpusvisualizerelationsbetweensets.Forexample,wemaythinkofasetSasaregionintheplaneandeachofitselementsasapoint.SubsetsofSmaythenbethoughtofthecollectionsofpointswithinS.Forexample,inFigure2-3-1

41、theshadedportionisasubsetofAandalsoasubsetofB.(35頁(yè)第五段)圖解有助于我們將集合之間的關(guān)系形象化。例如,可以把集合S看作平面內(nèi)的一個(gè)區(qū)域,其中的每一個(gè)元素即是一個(gè)點(diǎn)。 S內(nèi)某些點(diǎn)的全體。例如, 分是A的子集,同時(shí)也是 12那么S的子集就是 在圖2-3-1中陰影部 B的子集。Visual aids of this diagrams, are usefultype,calledVennfortesting thevalidityoftheoremsinsettheoryorforsuggestingmethodstoprovethem.Ofcours

42、e,theproofsthemselvesmustrelyonlyonthedefinitionsoftheconceptsandnotonthediagrams.這種圖解方法,叫做文氏圖,在集合論中常用于檢驗(yàn)定理的有效性或者為證明定理提供一些潛在的方法。當(dāng)然證明本身必須依賴于概念的定義而不是圖解。NewWords&Expressions:conversely反之geometricinterpretation幾何意義correspond對(duì)應(yīng)induction歸納法deducible可推導(dǎo)的proofbyinduction歸納證明difference差inductiveset歸納集dis

43、tinguished著名的inequality不等式entirelycomplete完整的integer整數(shù)Euclid歐幾里得interchangeably可互相交換的Euclidean歐式的intuitive直觀的the field axiom域公理irrational無(wú)理的2.4整數(shù)、有理數(shù)與實(shí)數(shù)Integers,RationalNumbersandRealNumbers1rationalrationalNewWords&Expressions:irrationalnumber無(wú)理數(shù)理的theorderaxiom序公理number有理數(shù)ordered有reasoning推理pro

44、ductscale尺度,刻度quotientsum和ThereexistcertainsubsetsofRwhicharedistinguishedbecausetheyhavespecialpropertiesnotsharedbyallrealnumbers.Inthissectionweshalldiscusssuchsubsets,theintegersandtherationalnumbers.4AIntegersandrationalnumbers有一些R的子集很著名,因?yàn)樗麄兙哂袑?shí)數(shù)所不具備的特殊性質(zhì)。在本節(jié)我們將討論這樣的子集,整數(shù)集和有理數(shù)集。3Tointroducethep

45、ositiveintegerswebeginwiththenumber1,whoseexistenceisguaranteedbyAxiom4.Thenumber1+1isdenotedby2,thenumber2+1by3,andsoon.Thenumbers1,2,3,,obtainedinthiswaybyrepeatedadditionof1areallpositive,andtheyarecalledthepositiveintegers.我們從數(shù)字1開(kāi)始介紹正整數(shù),公理4保證了1的存在性。1+1用2表示,2+1用3表示,以此類推,由1重復(fù)累加的方式得到的數(shù)字1,2,3,都是正的,它

46、們被叫做正整數(shù)。4Strictlyspeaking,thisdescriptionofthepositiveintegersisnotentirelycompletebecausewehavenotexplainedindetailwhatwemeanbytheexpressions“andsoon”,or“repeatedadditionof1”.嚴(yán)格地說(shuō),這種關(guān)于正整數(shù)的描述是不完整的,因?yàn)槲覀儧](méi)有詳細(xì)解釋“等等”或者“1的重復(fù)累加”的含義。5Althoughtheintuitivemeaningofexpressionsmayseemclear,incarefultreatmentoft

47、hereal-numbersystemitisnecessarytogiveamoreprecisedefinitionofthepositiveintegers.Therearemanywaystodothis.Oneconvenientmethodistointroducefirstthenotionofaninductiveset.雖然這些說(shuō)法的直觀意思似乎是清楚的,但是在認(rèn)真處理實(shí)數(shù)系統(tǒng)時(shí)必須給出一個(gè)更準(zhǔn)確的關(guān)于正整數(shù)的定義。有很多種方式來(lái)給出這個(gè)定義,一個(gè)簡(jiǎn)便的方法是先引進(jìn)歸納集的概念。6DEFINITIONOFANINDUCTIVESET.Asetofrealnumbersisca

48、lledaninductivesetifithasthefollowingtwoproperties:Thenumber1isintheset.Foreveryxintheset,thenumberx+1isalsointheset.Forexample,Risaninductiveset.Soistheset.Nowweshalldefinethepositiveintegerstobethoserealnumberswhichbelongtoeveryinductiveset.現(xiàn)在我們來(lái)定義正整數(shù),就是屬于每一個(gè)歸納集的實(shí)數(shù)。7LetPdenotethesetofallpositivein

49、tegers.ThenPisitselfaninductivesetbecause(a)itcontains1,and(b)itcontainsx+1wheneveritcontainsx.SincethemembersofPbelongtoeveryinductiveset,werefertoPasthesmallestinductiveset.用P表示所有正整數(shù)的集合。那么P本身是一個(gè)歸納集,因?yàn)槠渲泻?,滿足(a);只要包含x就包含x+1,滿足(b)。由于P中的元素屬于每一個(gè)歸納集,因此P是最小的歸納集。8ThispropertyofPformsthelogicalbasisforaty

50、peofreasoningthatmathematicianscallproofbyinduction,adetaileddiscussionofwhichisgiveninPart4ofthisintroduction.P的這種性質(zhì)形成了一種推理的邏輯基礎(chǔ),數(shù)學(xué)家稱之為歸納證明,在介紹的第四部分將給出這種方法的詳細(xì)論述。9Thenegativesofthepositiveintegersarecalledthenegativeintegers.Thepositivethe negativea set Z which we正整數(shù),負(fù)整數(shù)integers,togetherwithintegers

51、and0(zero),formcallsimplythesetofintegers.正整數(shù)的相反數(shù)被叫做負(fù)整數(shù)。和零構(gòu)成了一個(gè)集合Z,簡(jiǎn)稱為整數(shù)集。10Inathoroughtreatmentofthereal-numbersystem,itwouldbenecessaryatthisstagetoprovecertaintheoremsaboutintegers.Forexample,thesum,difference,orproductoftwointegersisaninteger,butthequotientoftwointegersneednottoneaninteger.Howev

52、er,weshallnotenterintothedetailsofsuchproofs.在實(shí)數(shù)系統(tǒng)中,為了周密性,此時(shí)有必要證明一些整數(shù)的定理。例如,兩個(gè)整數(shù)的和、差和積仍是整數(shù),但是商不一定是整數(shù)。然而還不能給出證明的細(xì)節(jié)。11Quotientsofintegersa/b(whereb#0)arecalledrationalnumbers.Thesetofrationalnumbers,denotedbyQ,containsZasasubset.Thereadershouldrealizethatallthefieldaxiomsandtheorderaxiomsaresatisfiedb

53、yQ.Forthisreason,wesaythatthesetofrationalnumbersisanorderedfield.RealnumbersthatarenotinQarecalledirrational.整數(shù)a與b的商被叫做有理數(shù),有理數(shù)集用Q表示,Z是Q的子集。讀者應(yīng)該認(rèn)識(shí)到Q滿足所有的域公理和序公理。因此說(shuō)有理數(shù)集是一個(gè)有序的域。不是有理數(shù)的實(shí)數(shù)被稱為無(wú)理數(shù)。12Thereaderisundoubtedlyfamiliarwiththegeometricinterpretationofrealnumbersbymeansofpointsonastraightline.Apo

54、intisselectedtorepresent0andanother,totherightof0,torepresent1,asillustratedinFigure2-4-1.Thischoicedeterminesthescale.4BGeometricinterpretationofrealnumbersaspointsonaline毫無(wú)疑問(wèn),讀者都熟悉通過(guò)在直線上描點(diǎn)的方式表示實(shí)數(shù)的幾何意義。如圖2-4-1所示,選擇一個(gè)點(diǎn)表示0,在0右邊的另一個(gè)點(diǎn)表示1。這種做法決定了刻度。13IfoneadoptsanappropriatesetofaxiomsforEuclideangeomet

55、ry,theneachrealnumbercorrespondstoexactlyonepointonthislineand,conversely,eachpointonthelinecorrespondstooneandonlyonerealnumber.如果采用歐式幾何公理中一個(gè)恰當(dāng)?shù)募?,那么每一個(gè)實(shí)數(shù)剛好對(duì)應(yīng)直線上的一個(gè)點(diǎn),反之,直線上的每一個(gè)點(diǎn)也對(duì)應(yīng)且只對(duì)應(yīng)一個(gè)實(shí)數(shù)。14Forthisreasonthelineisoftencalledthereallineortherealaxis,anditiscustomarytousethewordsrealnumberandpointint

56、erchangeably.Thusweoftenspeakthe point習(xí)慣上使O因此我們ofthepointxratherthancorrespondingtotherealnumber.為此直線通常被叫做實(shí)直線或者實(shí)軸,用“實(shí)數(shù)”這個(gè)單詞,而不是“點(diǎn)”經(jīng)常說(shuō)點(diǎn)x不是指與實(shí)數(shù)對(duì)應(yīng)的那個(gè)點(diǎn)。15r,Thisdeviceforrepresentingrealnumbersgeometricallyisaveryworthwhileaidthathelpsustodiscoverandunderstandbettercertainpropertiesofrealnumbers.Howeveth

57、e reader should realize that properties of real numbers that are to be accepted as theorems must be deducible the axioms without any referencesallfromtogeometry.這種幾何化的表示實(shí)數(shù)的方法是非常值得推崇的,它有助于幫助我們發(fā)現(xiàn)和理解實(shí)數(shù)的某些性質(zhì)。然而,讀者應(yīng)該認(rèn)識(shí)到,擬被采用作為定理的所有關(guān)于實(shí)數(shù)的性質(zhì)都必須不借助于幾何就能從公理推出。16Thisdoesnotmeanthatoneshouldnotmakeuseofgeometryinstudyingpropertiesof

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論