人教版九年級數(shù)學下冊知識點總結(jié)_第1頁
人教版九年級數(shù)學下冊知識點總結(jié)_第2頁
人教版九年級數(shù)學下冊知識點總結(jié)_第3頁
人教版九年級數(shù)學下冊知識點總結(jié)_第4頁
人教版九年級數(shù)學下冊知識點總結(jié)_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、人 教 版 九 年 級 數(shù) 學 下 冊 知 識 點 總 結(jié)26. 1二次函數(shù)(quadratic function )是指未知數(shù)的最高次數(shù)為二次的多項式函數(shù)。二次 函數(shù)可以表示為f(x)=axA2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。一般的,x和y之間存在如下關(guān)系:一般式y(tǒng)=ax A 2;+bx+c(a w0,a、 b、c 為常數(shù)),頂點坐標為(-b/2a , -(4ac-b A 2)/4a);頂點式y(tǒng)=a(x+m) A2+k(aw0,a、 m k 為常數(shù))或 y=a(x-h) A2+k(aw0,a、 h、k 為常 數(shù)),頂點坐標為(-m, k)對稱軸為x=-m,頂點的位

2、置特征和圖像的開口方向與函數(shù) y = ax A 2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;交點式y(tǒng)=a(x-x1)(x-x2)僅限于與x軸有交點 A (x1, 0)和B (x2, 0)的拋物線;重要概念:a, b, c為常數(shù),aw0,且 a決定函數(shù)的開口方向, a>0時,開口方 向向上,a<0時,開口方向向下。 a的絕對值還可以決定開口大小 ,a的絕對值越大開 口就越小,a的絕對值越小開口就越大。牛頓插值公式(已知三點求函數(shù)解析式)y=(y3(x-x1)(x-x2)/(x3-x1)(x3-x2)+(y2(x-x1)(x-x3)/(x2-x1)(x2-x3)+(y1

3、(x-x2)(x-x3)/(x1-x2)(x1-x3)由此可引導出交點式的系數(shù)a=y1/(x1*x2) (y1 為截距)求根公式二次函數(shù)表達式的右邊通常為二次三項式。求根公式x是自變量,y是x的二次函數(shù)x1,x2=- b±(V(bA2 -4ac)/2a(即求根公式)(如右圖)求根的方法還有因式分解法和配方法在中作出二次函數(shù) y=2x的平方的圖像,可以看出,二次函數(shù)的圖像是一條永無止境的。不同的二次函數(shù)圖像如果所畫圖形準確無誤,那么二次函數(shù)將是由一般式平移得到的。注意:草圖要有 1本身圖像,旁邊注明函數(shù)。2畫出對稱軸,并注明 X=十么3與X軸交點坐標,與 Y軸交點坐標,頂點坐標。拋物線

4、的性質(zhì)軸對稱1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)頂點2.拋物線有一個頂點 P,坐標為 P ( -b/2a, 4ac-bA2;/4a )當-b/2a=0 時,P在y軸上;當 A = bA2; -4ac=0時,P在x軸上。開口3 .a決定拋物線的開口方向和大小。當a>0時,拋物線向上開口;當 a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。決定對稱軸位置的因素4 . 一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。當a與b同號時(即ab>0),對稱軸在 y

5、軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號當a與b異號時(即ab< 0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要 大于0,也就是-b/2a>0, 所以b/2a要小于0,所以a、b要異號可簡單記憶為,即當 a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab< 0 ),對稱軸在y軸右。事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式()的斜率k的值。可通過對二次函數(shù)求導得到。決定拋物線與y軸交點的因素5 .常數(shù)項c決定拋物線與y軸交點。拋物線與y軸交于(0, c)

6、拋物線與x軸交點個數(shù)6 .拋物線與x軸交點個數(shù)A = bA2-4ac >0時,拋物線與 x軸有2個交點。A = bA2-4ac=0 時,拋物線與 x軸有1個交點。A = bA2-4ac <0時,拋物線與 x軸沒有交點。X的取值是虛數(shù)(x= - b± VbA2-4ac的值的相反數(shù),乘上虛數(shù)i ,整個式子除以 2a)當a>0時,函數(shù)在x= -b/2a 處取得最小值 f(-b/2a)=4ac-b&sup2;/4a;在x|x<-b/2a 上是減函數(shù),在x|x>-b/2a上是增函數(shù);拋物線的開口向上;函數(shù)的是 y|y >4ac-bA2/4a相反不變當

7、b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=axA2+c(a 中 0)特殊值的形式7 .特殊值的形式當 x= 1 時 y=a+b+c當 x=-1 時 y=a-b+c當 x=2 時 y=4a+2b+c當 x=-2 時 y=4a-2b+c二次函數(shù)的性質(zhì)8 .定義域:R值域:(對應解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)(4ac-bA2)/4a,正無窮);t ,正無窮)奇偶性:當b=0時為偶函數(shù),當 bwo時為非奇非偶函數(shù)周期性:無解析式:y=axA2+bx+c 一般式aw0a>0,則拋物線開口朝上;a<0,則拋物線開口朝下;極值點:(-b/

8、2a , (4ac-bA2)/4a ); A =bA 2-4ac,A>0,圖象與x軸交于兩點:(-b- V A /2a , 0)和(-b+V A /2a , 0);A= 0,圖象與x軸交于一點:(-b/2a , 0);A< 0,圖象與x軸無交點; y=a(x-h)A2+k頂點式此時,對應極值點為( h, k),其中h=-b/2a , k=(4ac-bA2)/4a; y=a(x-x1)(x-x2) 交點式(雙根式)(aw0)對稱軸 X=(X1+X2)/2 當a>0且X呈(X1+X2)/2 時,Y隨X的增大而增大,當 a>0且X三(X1+X2) /2時Y隨X的增大而減小此時

9、,x1、x2即為函數(shù)與X軸的兩個交點,將 X、Y代入即可求出解析式(一般 與一元二次方程連用)。交點式是Y=A(X-X1)(X-X2) 知道兩個x軸交點和另一個點坐標設(shè)交點式。兩 交點X值就是相應X1 X2值。26. 21 .如果拋物線y ax2 bx c與x軸有公共點,公共點的橫坐標是x0,那么當x x0時,函 數(shù)的值是0,因此x x0就是方程ax2 bx c 0的一個根。2 .二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公 共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個 不等的實數(shù)根。26. 3在日常生活、生產(chǎn)和科研中,求使材料最省

10、、時間最少、效率最高等問題,有些可歸結(jié)為 求二次函數(shù)的最大值或最小值。27. 1概述如果兩個圖形形狀相同,但大小不一定相等,那么這兩個圖形相似。(相似的符 號:S)判定如果兩個多邊形滿足對應角相等,對應邊的比相等,那么這兩個多邊形相似。相似比相似多邊形的對應邊的比叫相似比。相似比為1時,相似的兩個圖形。性質(zhì)相似多邊形的對應角相等,對應邊的比相等。相似多邊形的周長比等于相似 比。相似多邊形的面積比等于相似比的平方。27. 2判定1 .兩個三角形的兩個角對應相等2 .兩邊對應成比例,且夾角相等3 .三邊對應成比例4 .平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與 原三角形相似

11、。例題vZ A=Z A' / B=Z B' . ABg A'B'C'性質(zhì)1 .的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半 徑等)的比等于相似比。2 .相似三角形周長的比等于相似比。3 .相似三角形面積的比等于相似比的平方27. 3如果兩個圖形不僅是,而且每組對應點的連線交于一點,對應邊互相平行,那么這兩個圖形叫做,這個點叫做位似中心,這時的相似比又稱為位似比。性質(zhì)位似圖形的對應點和位似中心在同一直線上,它們到位似中心的距離之比等于相似比。位似多邊形的對應邊平行或共線。位似可以將一個圖形放大或縮小。位似圖形的中心可以在任意的一點,

12、不過位似圖形也會隨著位似中心的位變而位變。根據(jù)一個位似中心可以作兩個關(guān)于已知圖形一定位似比的位似圖形,這兩個圖形分布在位似中心的兩側(cè) ,并且關(guān)于位似中心對稱。注思1、位似是一種具有位置關(guān)系的相似,所以兩個圖形是位似圖形,必定是相似圖 形,而相似圖形不一定是位似圖形;2、兩個位似圖形的位似中心只有一個;3、兩個位似圖形可能位于位似中心的兩側(cè),也可能位于位似中心的一側(cè);4、位似比就是相似比.利用位似圖形的定義可判斷兩個圖形是否位似;5、平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形位 似。28. 1銳角角 A的(sin ) , (cos)和(tan) , (cot )以及(sec)

13、 , ( csc)者B叫做角 A的 銳角三角函數(shù)。正弦(sin )等于對邊比斜邊,余弦(cos)等于鄰邊比斜邊正切(tan )等于對邊比鄰邊;余切(cot )等于鄰邊比對邊正割(sec)等于斜邊比鄰邊余割(csc)等于斜邊比對邊正切與余切互為倒數(shù)互余角的三角函數(shù)間的關(guān)系。(90 0 - a )= a , cos(90 0- a 尸sin a ,(90 0 - a 尸cot a , cot(90 °- a 尸tan a .同角三角函數(shù)間的關(guān)系平方關(guān)系:sinA2( a )+c0sA2( a )=1tanA2( a)+1=secA2( a)cotA2( a)+1=cscA2( a),積的

14、關(guān)系:sin a =tan a - cos acos a =cot a sin atan a =sin a - sec acot a =cos a - csc asec = =tan a - csc aCSC a =seca cot a倒數(shù)關(guān)系:tan a cot a =1sin a - csc = =1cos s - sec a =1直角三角形ABC中,角A的正弦值就等于角 A的對邊比斜邊,余弦等于角A的鄰邊比斜邊正切等于對邊比鄰邊,余切等于鄰邊比對邊三角函數(shù)值(1)特殊角三角函數(shù)值(2) 0°90°的任意角的三角函數(shù)值,查三角函數(shù)表。(3)銳角三角函數(shù)值的變化情況銳角三

15、角函數(shù)值都是正值(ii )當角度在0°90°間變化時,正弦值隨著角度的增大(或減?。┒龃螅ɑ驕p?。?余弦值隨著角度的增大(或減?。┒鴾p小(或增大) 正切值隨著角度的增大(或減?。┒龃螅ɑ驕p?。?余切值隨著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅╥ii )當角度在0° < a0900間變化時,0<sin a < 1, 1 > cos a >0,當角度在0° <a <900間變化時,tan a >0, cot a >0.特殊的三角函數(shù)值0° 30 0 45 0 60 0 90 00 1/2 V

16、2/2 V3/2 1 sin a1 V3/2 V2/2 1/2 0 cos a0 V3/3 1 V3 None - tan aNone V3 1 V3/3 0 cot a28. 2勾股定理,只適用于直角三角形(外國叫aA2+bA2=cA2,其中a和b分別為直角三角形兩直角邊,c為斜邊。勾股弦數(shù)是指一組能使勾股定理關(guān)系成立的三個正整數(shù)。比如:3, 4, 5。他們分別是3, 4和5的倍數(shù)。常見的勾股弦數(shù)有:3, 4, 5; 6, 8, 10;等等.直角三角形的特征直角三角形兩個銳角互余;直角三角形斜邊上的中線等于斜邊的一半;直角三角形中30°所對的直角邊等于斜邊的一半;勾股定理:直角三角

17、形中,兩直角邊的平方和等于斜邊的平方,即:六.22A在 RtAABC,若/ C= 90 ,則 a2+b2=c2;3PB勾股定理的逆定理:如果三角形的一條邊的平方等于另外兩條邊的C平方銳角三角函數(shù)的定義:如圖,在RtzXABC中,bcC a/ C= 90° ,射影定理:AC=AD AB BC=BD AB CP=DA DBA K/A, /B, /C所對的邊分別為a,b,c ,和,則這個三角形是直角三角形,即:在 ABC中,若a2+b2=c2,則/C= 90° ;貝U sinA=a , cosA上,tanA=a , cotA=b c c b a特殊角的三角函數(shù)值:(并會觀察其三角

18、函數(shù)值隨的變化情況)解sincostancot直角三角形(Rt A ARC ri z_a rAu v,30/C0= 90° )二初夕間的45關(guān)011系:a2+b2=c2.60°兩銳角之間的關(guān)系:/ A十/B=O90邊角之間的關(guān)系:sinA = A寸邊 =a, cosA= A勺產(chǎn)邊 =b .斜邊c斜邊c,八A的對邊a,八A的鄰邊btanA=- = - , cotA=.A的鄰邊bA的對邊a解直角三角形中常見類型:已知一邊一銳角.已知兩邊.解直角三角形的應用.第二十九章投影與視圖29. 1投影一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的叫做物體的投影(project

19、ion ),照射光線叫做投影線,投影所在的平面叫做。有時光線是一組互相平行的射線,例如太陽光或探照燈光的一束光中的光線。由平行光線形成的投影是(parallel projection).由同一點(點光源發(fā)出的光線)形成的投影叫做( center projection) 。投影線 垂直于投影面產(chǎn)生的投影叫做。投影線平行于投影面產(chǎn)生的投影叫做平行投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。29. 2三視圖三視圖是觀測者從三個不同位置觀察同一個空間幾何體而畫出的圖形。將人的視線規(guī)定為平行投影線,然后正對著物體看過去,將所見物體的輪廓用正投影法繪制出來該圖形稱為視圖。一個物體有六個視圖:從物體的前面向后面投射所得的視圖稱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論