版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、用均值(基本)不等式求最值的類型及方法均值不等式是不等式一章重要內(nèi)容,是求函數(shù)最值的一個(gè)重要工具,也是高考常考的一個(gè)重要知識點(diǎn)。要求能熟練地運(yùn)用均值不等式求解一些函數(shù)的最值問題。一、幾個(gè)重要的均值不等式當(dāng)且僅當(dāng)a = b時(shí),“=”號成立;當(dāng)且僅當(dāng)a = b時(shí),“=”號成立;當(dāng)且僅當(dāng)a = b = c時(shí),“=”號成立; ,當(dāng)且僅當(dāng)a = b = c時(shí),“=”號成立.注: 注意運(yùn)用均值不等式求最值時(shí)的條件:一“正”、二“定”、三“等”; 熟悉一個(gè)重要的不等式鏈:。二、函數(shù)圖象及性質(zhì)(1)函數(shù)圖象如圖:(2)函數(shù)性質(zhì):值域:;單調(diào)遞增區(qū)間:,;單調(diào)遞減區(qū)間:,.三、用均值不等式求最值的常見類型類型:
2、求幾個(gè)正數(shù)和的最小值。例1、求函數(shù)的最小值。解析:,當(dāng)且僅當(dāng)即時(shí),“=”號成立,故此函數(shù)最小值是。評析:利用均值不等式求幾個(gè)正數(shù)和的最小值時(shí),關(guān)鍵在于構(gòu)造條件,使其積為常數(shù)。通常要通過添加常數(shù)、拆項(xiàng)(常常是拆底次的式子)等方式進(jìn)行構(gòu)造。類型:求幾個(gè)正數(shù)積的最大值。例2、求下列函數(shù)的最大值: 解析:,當(dāng)且僅當(dāng)即時(shí),“=”號成立,故此函數(shù)最大值是1。,則,欲求y的最大值,可先求的最大值。,當(dāng)且僅當(dāng),即時(shí),不等式中的“=”號成立,故此函數(shù)最大值是。評析:利用均值不等式求幾個(gè)正數(shù)積的最大值,關(guān)鍵在于構(gòu)造條件,使其和為常數(shù)。通常要通過乘以或除以常數(shù)、拆因式(常常是拆高次的式子)、平方等方式進(jìn)行構(gòu)造。類型
3、:用均值不等式求最值等號不成立。例3、若x、y,求的最小值。解法一:(單調(diào)性法)由函數(shù)圖象及性質(zhì)知,當(dāng)時(shí),函數(shù)是減函數(shù)。證明:任取且,則,則,即在上是減函數(shù)。故當(dāng)時(shí),在上有最小值5。解法二:(配方法)因,則有,易知當(dāng)時(shí), 且單調(diào)遞減,則在上也是減函數(shù),即在上是減函數(shù),當(dāng)時(shí),在上有最小值5。解法三:(拆分法),當(dāng)且僅當(dāng)時(shí)“=”號成立,故此函數(shù)最小值是5。評析:求解此類問題,要注意靈活選取方法,特別是單調(diào)性法具有一般性,配方法及拆分法也是較為簡潔實(shí)用得方法。類型:條件最值問題。例4、已知正數(shù)x、y滿足,求的最小值。解法一:(利用均值不等式),當(dāng)且僅當(dāng)即時(shí)“=”號成立,故此函數(shù)最小值是18。解法二:
4、(消元法)由得,由則。當(dāng)且僅當(dāng)即時(shí)“=”號成立,故此函數(shù)最小值是18。評析:此類問題是學(xué)生求解易錯(cuò)得一類題目,解法一學(xué)生普遍有這樣一種錯(cuò)誤的求解方法: 。原因就是等號成立的條件不一致。類型:利用均值不等式化歸為其它不等式求解的問題。例5、已知正數(shù)滿足,試求、的范圍。解法一:由,則,即解得,當(dāng)且僅當(dāng)即時(shí)取“=”號,故的取值范圍是。又,當(dāng)且僅當(dāng)即時(shí)取“=”號,故的取值范圍是。解法二:由,知,則:,由,則:,當(dāng)且僅當(dāng),并求得時(shí)取“=”號,故的取值范圍是。,當(dāng)且僅當(dāng),并求得時(shí)取“=”號,故的取值范圍是。評析:解法一具有普遍性,而且簡潔實(shí)用,易于掌握,解法二要求掌握構(gòu)造的技巧。類型I:利用均值不等式解決
5、問題。例:求曲線上的點(diǎn)到原點(diǎn)的距離的最小值。 四、均值不等式易錯(cuò)例析:例1. 求函數(shù)的最值。錯(cuò)解: 當(dāng)且僅當(dāng)即時(shí)取等號。所以當(dāng)時(shí),y的最小值為25,此函數(shù)沒有最大值。分析:上述解題過程中應(yīng)用了均值不等式,卻忽略了應(yīng)用均值不等式求最值時(shí)的條件,兩個(gè)數(shù)都應(yīng)大于零,因而導(dǎo)致錯(cuò)誤。因?yàn)楹瘮?shù)的定義域?yàn)椋员仨殞Φ恼?fù)加以分類討論。正解:1)當(dāng)時(shí),當(dāng)且僅當(dāng)即時(shí)取等號。所以當(dāng)時(shí), 2)當(dāng)時(shí), 當(dāng)且僅當(dāng),即時(shí)取等號,所以當(dāng)時(shí),.例2. 當(dāng)時(shí),求的最小值。錯(cuò)解:因?yàn)樗援?dāng)且僅當(dāng)即時(shí),。分析:用均值不等式求“和”或“積”的最值時(shí),必須分別滿足“積為定值”或“和為定值”,而上述解法中與的積不是定值,導(dǎo)致應(yīng)用錯(cuò)誤。
6、正解:因?yàn)楫?dāng)且僅當(dāng),即時(shí)等號成立,所以當(dāng)時(shí),。例3. 求的最小值。錯(cuò)解:因?yàn)?,所以分析:忽視了取最小值時(shí)須成立的條件,而此式化解得,無解,所以原函數(shù)取不到最小值。正解:令,則又因?yàn)闀r(shí),是遞增的。所以當(dāng),即時(shí),。例4.已知且,求的最小值.錯(cuò)解: ,的最小值為.分析:解題時(shí)兩次運(yùn)用均值不等式,但取等號條件分別為和,而這兩個(gè)式子不能同時(shí)成立,故取不到最小值.正解:當(dāng)且僅當(dāng)即時(shí)等號成立. 的最小值為.綜上所述,應(yīng)用均值不等式求最值要注意: 一要正:各項(xiàng)或各因式必須為正數(shù);二可定:必須滿足“和為定值”或“積為定值”,要湊出“和為定值”或“積為定值”的式子結(jié)構(gòu),如果找不出“定值”的條件用這個(gè)定理,求最值就
7、會出錯(cuò);三能等:要保證等號確能成立,如果等號不能成立,那么求出的仍不是最值。鞏固練習(xí):1、已知:且,則的最大值為( )(A) (B) (C) (D)2、若,且恒成立,則a的最小值是( )(A) (B) (C)2 (D)13、已知下列不等式:;.其中正確的個(gè)數(shù)是( )(A)0個(gè) (B)1個(gè) (C)2個(gè) (D)3個(gè)4、設(shè),則下列不等式中不成立的是( )(A) (B) (C) (D)5、設(shè)且的最大值是( )(A) (B) (C) (D)6、若實(shí)數(shù)滿足,則的最小值是( )(A)18 (B)6 (C) (D)7、若正數(shù)滿足,則的取值范圍是 .8、若,且,則的最小值為 .9、若,則中最大的是 .10、若0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)財(cái)務(wù)預(yù)測模型的建立計(jì)劃
- 比賽策劃行業(yè)工作安排計(jì)劃
- 市場渠道拓展月度計(jì)劃
- 綜合物流服務(wù)委托合同三篇
- 柬埔寨購房協(xié)議書范文
- 老人行走保護(hù)協(xié)議書范文范本
- 施工合作協(xié)議書范文范本電子版
- 湖南定向醫(yī)學(xué)生協(xié)議書范文模板
- 銷售崗位述職報(bào)告
- 英語高考中why提問的題答題技巧
- 2024年中國建筑科學(xué)研究院限公司校園招聘【重點(diǎn)基礎(chǔ)提升】模擬試題(共500題)附帶答案詳解
- 數(shù)字資源管理規(guī)章制度
- 缺血性腦卒中全流程規(guī)范化管理
- 醫(yī)院培訓(xùn)課件:《PPD試驗(yàn)》
- 家長會課件:小學(xué)三年級家長會 課件
- 文創(chuàng)產(chǎn)品設(shè)計(jì)方案(2篇)
- 2024年廣東中山市檢察機(jī)關(guān)勞動合同制司法輔助人員招聘筆試參考題庫附帶答案詳解
- 米托蒽醌藥物代謝動力學(xué)研究
- 2024年景區(qū)托管運(yùn)營合作協(xié)議
- 國開電大《應(yīng)用寫作(漢語)》形考任務(wù)1-6答案
- SMW工法樁施工課件
評論
0/150
提交評論