版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)整理1.定義:一般地,如果是常數(shù),那么叫做的二次函數(shù).2.二次函數(shù)的性質(zhì)(1)拋物線(xiàn)的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是軸.(2)函數(shù)的圖像與的符號(hào)關(guān)系. 當(dāng)時(shí)拋物線(xiàn)開(kāi)口向上頂點(diǎn)為其最低點(diǎn);當(dāng)時(shí)拋物線(xiàn)開(kāi)口向下頂點(diǎn)為其最高點(diǎn).(3)頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是軸的拋物線(xiàn)的解析式形式為.3.二次函數(shù) 的圖像是對(duì)稱(chēng)軸平行于(包括重合)軸的拋物線(xiàn).4.二次函數(shù)用配方法可化成:的形式,其中.5.二次函數(shù)由特殊到一般,可分為以下幾種形式:;.6.拋物線(xiàn)的三要素:開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn). 的符號(hào)決定拋物線(xiàn)的開(kāi)口方向:當(dāng)時(shí),開(kāi)口向上;當(dāng)時(shí),開(kāi)口向下;相等,拋物線(xiàn)的開(kāi)口大小、形狀相同. 平行于軸(或重合
2、)的直線(xiàn)記作.特別地,軸記作直線(xiàn).7.頂點(diǎn)決定拋物線(xiàn)的位置.幾個(gè)不同的二次函數(shù),如果二次項(xiàng)系數(shù)相同,那么拋物線(xiàn)的開(kāi)口方向、開(kāi)口大小完全相同,只是頂點(diǎn)的位置不同.8.求拋物線(xiàn)的頂點(diǎn)、對(duì)稱(chēng)軸的方法(1)公式法:,頂點(diǎn)是,對(duì)稱(chēng)軸是直線(xiàn). (2)配方法:運(yùn)用配方的方法,將拋物線(xiàn)的解析式化為的形式,得到頂點(diǎn)為(,),對(duì)稱(chēng)軸是直線(xiàn). (3)運(yùn)用拋物線(xiàn)的對(duì)稱(chēng)性:由于拋物線(xiàn)是以對(duì)稱(chēng)軸為軸的軸對(duì)稱(chēng)圖形,所以對(duì)稱(chēng)軸的連線(xiàn)的垂直平分線(xiàn)是拋物線(xiàn)的對(duì)稱(chēng)軸,對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)是頂點(diǎn). 用配方法求得的頂點(diǎn),再用公式法或?qū)ΨQ(chēng)性進(jìn)行驗(yàn)證,才能做到萬(wàn)無(wú)一失.9.拋物線(xiàn)中,的作用 (1)決定開(kāi)口方向及開(kāi)口大小,這與中的完全一樣.
3、 (2)和共同決定拋物線(xiàn)對(duì)稱(chēng)軸的位置.由于拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn),故:時(shí),對(duì)稱(chēng)軸為軸;(即、同號(hào))時(shí),對(duì)稱(chēng)軸在軸左側(cè);(即、異號(hào))時(shí),對(duì)稱(chēng)軸在軸右側(cè). (3)的大小決定拋物線(xiàn)與軸交點(diǎn)的位置. 當(dāng)時(shí),拋物線(xiàn)與軸有且只有一個(gè)交點(diǎn)(0,): ,拋物線(xiàn)經(jīng)過(guò)原點(diǎn); ,與軸交于正半軸;,與軸交于負(fù)半軸. 以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線(xiàn)的對(duì)稱(chēng)軸在軸右側(cè),則 .10.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開(kāi)口方向?qū)ΨQ(chēng)軸頂點(diǎn)坐標(biāo)當(dāng)時(shí)開(kāi)口向上當(dāng)時(shí)開(kāi)口向下(軸)(0,0)(軸)(0, )(,0)(,)()11.用待定系數(shù)法求二次函數(shù)的解析式 (1)一般式:.已知圖像上三點(diǎn)或三對(duì)、的值,通常選擇
4、一般式. (2)頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ(chēng)軸,通常選擇頂點(diǎn)式. (3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.12.直線(xiàn)與拋物線(xiàn)的交點(diǎn) (1)軸與拋物線(xiàn)得交點(diǎn)為(0, ). (2)與軸平行的直線(xiàn)與拋物線(xiàn)有且只有一個(gè)交點(diǎn)(,). (3)拋物線(xiàn)與軸的交點(diǎn) 二次函數(shù)的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對(duì)應(yīng)一元二次方程的兩個(gè)實(shí)數(shù)根.拋物線(xiàn)與軸的交點(diǎn)情況可以由對(duì)應(yīng)的一元二次方程的根的判別式判定: 有兩個(gè)交點(diǎn)拋物線(xiàn)與軸相交; 有一個(gè)交點(diǎn)(頂點(diǎn)在軸上)拋物線(xiàn)與軸相切; 沒(méi)有交點(diǎn)拋物線(xiàn)與軸相離. (4)平行于軸的直線(xiàn)與拋物線(xiàn)的交點(diǎn) 同(3)一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),
5、兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是的兩個(gè)實(shí)數(shù)根. (5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組 的解的數(shù)目來(lái)確定:方程組有兩組不同的解時(shí)與有兩個(gè)交點(diǎn); 方程組只有一組解時(shí)與只有一個(gè)交點(diǎn);方程組無(wú)解時(shí)與沒(méi)有交點(diǎn). (6)拋物線(xiàn)與軸兩交點(diǎn)之間的距離:若拋物線(xiàn)與軸兩交點(diǎn)為,由于、是方程的兩個(gè)根,故一次函數(shù)與反比例函數(shù)考點(diǎn)一、平面直角坐標(biāo)系 (3分) 1、平面直角坐標(biāo)系在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)
6、系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點(diǎn),不屬于任何象限。2、點(diǎn)的坐標(biāo)的概念點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)??键c(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征 (3分) 1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征 點(diǎn)P(x,y)在第一象限點(diǎn)P(x,y)在第二象限點(diǎn)P(x,y)在第三象限點(diǎn)P(x,y)在第四象限2、坐標(biāo)軸上的點(diǎn)的特征點(diǎn)P(x,y)在x軸上,x為
7、任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)點(diǎn)P(x,y)既在x軸上,又在y軸上x(chóng),y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)3、兩條坐標(biāo)軸夾角平分線(xiàn)上點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一、三象限夾角平分線(xiàn)上x(chóng)與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線(xiàn)上x(chóng)與y互為相反數(shù)4、和坐標(biāo)軸平行的直線(xiàn)上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線(xiàn)上的各點(diǎn)的縱坐標(biāo)相同。位于平行于y軸的直線(xiàn)上的各點(diǎn)的橫坐標(biāo)相同。5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的特征點(diǎn)P與點(diǎn)p關(guān)于x軸對(duì)稱(chēng)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p關(guān)于y軸對(duì)稱(chēng)縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對(duì)稱(chēng)橫、縱坐標(biāo)均互為相反數(shù)6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
8、點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:(1)點(diǎn)P(x,y)到x軸的距離等于(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于考點(diǎn)三、函數(shù)及其相關(guān)概念 (38分) 1、變量與常量在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。2、函數(shù)解析式用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)(1)解析法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有
9、這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。(3)圖像法用圖像表示函數(shù)關(guān)系的方法叫做圖像法。4、由函數(shù)解析式畫(huà)其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)(3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)??键c(diǎn)四、正比例函數(shù)和一次函數(shù) (310分) 1、正比例函數(shù)和一次函數(shù)的概念一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。特別地,當(dāng)一次函數(shù)中的b為0時(shí),(k為常數(shù),k0)。這時(shí)
10、,y叫做x的正比例函數(shù)。2、一次函數(shù)的圖像所有一次函數(shù)的圖像都是一條直線(xiàn)3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線(xiàn);正比例函數(shù)的圖像是經(jīng)過(guò)原點(diǎn)(0,0)的直線(xiàn)。k的符號(hào)b的符號(hào)函數(shù)圖像圖像特征k>0b>0 y 0 x圖像經(jīng)過(guò)一、二、三象限,y隨x的增大而增大。b<0 y 0 x圖像經(jīng)過(guò)一、三、四象限,y隨x的增大而增大。K<0b>0 y 0 x 圖像經(jīng)過(guò)一、二、四象限,y隨x的增大而減小b<0 y 0 x 圖像經(jīng)過(guò)二、三、四象限,y隨x的增大而減小。注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。4、正
11、比例函數(shù)的性質(zhì),一般地,正比例函數(shù)有下列性質(zhì):(1)當(dāng)k>0時(shí),圖像經(jīng)過(guò)第一、三象限,y隨x的增大而增大;(2)當(dāng)k<0時(shí),圖像經(jīng)過(guò)第二、四象限,y隨x的增大而減小。5、一次函數(shù)的性質(zhì),一般地,一次函數(shù)有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小6、正比例函數(shù)和一次函數(shù)解析式的確定確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法??键c(diǎn)五、反比例函數(shù) (310分) 1、反比例函數(shù)的概念一般地,函數(shù)(k是常數(shù),k0)叫做反
12、比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。2、反比例函數(shù)的圖像反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。3、反比例函數(shù)的性質(zhì)反比例函數(shù)k的符號(hào)k>0k<0圖像 y O x y O x性質(zhì)x的取值范圍是x0, y的取值范圍是y0;當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。在每個(gè)象限內(nèi),y隨x 的增大而減小。x
13、的取值范圍是x0, y的取值范圍是y0;當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別在第二、四象限。在每個(gè)象限內(nèi),y隨x 的增大而增大。4、反比例函數(shù)解析式的確定確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。5、反比例函數(shù)中反比例系數(shù)的幾何意義如下圖,過(guò)反比例函數(shù)圖像上任一點(diǎn)P作x軸、y軸的垂線(xiàn)PM,PN,則所得的矩形PMON的面積S=PMPN=。 。二次函數(shù)考點(diǎn)一、二次函數(shù)的概念和圖像 (38分) 1、二次函數(shù)的概念一般地,如果,那么y叫做x 的二次函數(shù)。叫做二次函數(shù)的一般式。2、二次函數(shù)的圖像
14、二次函數(shù)的圖像是一條關(guān)于對(duì)稱(chēng)的曲線(xiàn),這條曲線(xiàn)叫拋物線(xiàn)。拋物線(xiàn)的主要特征:有開(kāi)口方向;有對(duì)稱(chēng)軸;有頂點(diǎn)。3、二次函數(shù)圖像的畫(huà)法五點(diǎn)法:(1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線(xiàn)畫(huà)出對(duì)稱(chēng)軸(2)求拋物線(xiàn)與坐標(biāo)軸的交點(diǎn):當(dāng)拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線(xiàn)與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱(chēng)點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來(lái),并向上或向下延伸,就得到二次函數(shù)的圖像。當(dāng)拋物線(xiàn)與x軸只有一個(gè)交點(diǎn)或無(wú)交點(diǎn)時(shí),描出拋物線(xiàn)與y軸的交點(diǎn)C及對(duì)稱(chēng)點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫(huà)出二次函數(shù)的草圖。如果需要畫(huà)出比較精確的圖像,可再描出一對(duì)對(duì)稱(chēng)點(diǎn)A、B,然后順次連
15、接五點(diǎn),畫(huà)出二次函數(shù)的圖像??键c(diǎn)二、二次函數(shù)的解析式 (1016分)二次函數(shù)的解析式有三種形式:(1)一般式:(2)頂點(diǎn)式:(3)當(dāng)拋物線(xiàn)與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示??键c(diǎn)三、二次函數(shù)的最值 (10分)如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)時(shí),。如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大
16、而減小,則當(dāng)時(shí),當(dāng)時(shí),??键c(diǎn)四、二次函數(shù)的性質(zhì) (614分) 1、二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a>0a<0 y 0 x y 0 x 性質(zhì)(1)拋物線(xiàn)開(kāi)口向上,并向上無(wú)限延伸;(2)對(duì)稱(chēng)軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱(chēng)軸的左側(cè),即當(dāng)x<時(shí),y隨x的增大而減?。辉趯?duì)稱(chēng)軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而增大,簡(jiǎn)記左減右增;(4)拋物線(xiàn)有最低點(diǎn),當(dāng)x=時(shí),y有最小值,(1)拋物線(xiàn)開(kāi)口向下,并向下無(wú)限延伸;(2)對(duì)稱(chēng)軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱(chēng)軸的左側(cè),即當(dāng)x<時(shí),y隨x的增大而增大;在對(duì)稱(chēng)軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而減小,簡(jiǎn)記左增右減
17、;(4)拋物線(xiàn)有最高點(diǎn),當(dāng)x=時(shí),y有最大值,2、二次函數(shù)中,的含義:表示開(kāi)口方向:>0時(shí),拋物線(xiàn)開(kāi)口向上, <0時(shí),拋物線(xiàn)開(kāi)口向下與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=表示拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo):(0,)3、二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)。因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn)。當(dāng)>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)<0時(shí),圖像與x軸沒(méi)有交點(diǎn)。補(bǔ)充:1、兩點(diǎn)間距離公式(當(dāng)遇到?jīng)]有思路的題時(shí),可用此方法拓展思路,以尋求解題方法) y如圖:點(diǎn)A坐標(biāo)為(x1,y1)點(diǎn)B坐標(biāo)為(x2,y
18、2)則AB間的距離,即線(xiàn)段AB的長(zhǎng)度為 A 0 x B2、函數(shù)平移規(guī)律(中考試題中,只占3分,但掌握這個(gè)知識(shí)點(diǎn),對(duì)提高答題速度有很大幫助,可以大大節(jié)省做題的時(shí)間) 3、直線(xiàn)斜率: b為直線(xiàn)在y軸上的截距4、直線(xiàn)方程: 一般兩點(diǎn)斜截距 1,一般 一般 直線(xiàn)方程 ax+by+c=0 2,兩點(diǎn) 由直線(xiàn)上兩點(diǎn)確定的直線(xiàn)的兩點(diǎn)式方程,簡(jiǎn)稱(chēng)兩點(diǎn)式: -最最常用,記牢 3,點(diǎn)斜 知道一點(diǎn)與斜率 4,斜截 斜截式方程,簡(jiǎn)稱(chēng)斜截式: ykxb(k0) 5 ,截距 由直線(xiàn)在軸和軸上的截距確定的直線(xiàn)的截距式方程,簡(jiǎn)稱(chēng)截距式: 記牢可大幅提高運(yùn)算速度 5、 設(shè)兩條直線(xiàn)分別為,: : 若,則有且。 若6、 點(diǎn)P(x0,
19、y0)到直線(xiàn)y=kx+b(即:kx-y+b=0) 的距離: 對(duì)于點(diǎn)P(x0,y0)到直線(xiàn)滴一般式方程 ax+by+c=0 滴距離有 常用記牢中考點(diǎn)擊 考點(diǎn)分析:內(nèi)容要求1、函數(shù)的概念和平面直角坐標(biāo)系中某些點(diǎn)的坐標(biāo)特點(diǎn)2、自變量與函數(shù)之間的變化關(guān)系及圖像的識(shí)別,理解圖像與變量的關(guān)系3、一次函數(shù)的概念和圖像4、一次函數(shù)的增減性、象限分布情況,會(huì)作圖5、反比例函數(shù)的概念、圖像特征,以及在實(shí)際生活中的應(yīng)用6、二次函數(shù)的概念和性質(zhì),在實(shí)際情景中理解二次函數(shù)的意義,會(huì)利用二次函數(shù)刻畫(huà)實(shí)際問(wèn)題中變量之間的關(guān)系并能解決實(shí)際生活問(wèn)題命題預(yù)測(cè):函數(shù)是數(shù)形結(jié)合的重要體現(xiàn),是每年中考的必考內(nèi)容,函數(shù)的概念主要用選擇、
20、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標(biāo)系等,一般占2%左右一次函數(shù)與一次方程有緊密地聯(lián)系,是中考必考內(nèi)容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右反比例函數(shù)的圖像和性質(zhì)的考查常以客觀題形式出現(xiàn),要關(guān)注反比例函數(shù)與實(shí)際問(wèn)題的聯(lián)系,突出應(yīng)用價(jià)值,36分;二次函數(shù)是初中數(shù)學(xué)的一個(gè)十分重要的內(nèi)容,是中考的熱點(diǎn),多以壓軸題出現(xiàn)在試卷中要求:能通過(guò)對(duì)實(shí)際問(wèn)題情景分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義;會(huì)用描點(diǎn)法畫(huà)二次函數(shù)圖像,能叢圖像上分析二次函數(shù)的性質(zhì);會(huì)根據(jù)公式確定圖像的頂點(diǎn)、開(kāi)口方向和對(duì)稱(chēng)軸,并能解決實(shí)際問(wèn)題會(huì)求一元二次方程的近似值分析近年中考
21、,尤其是課改實(shí)驗(yàn)區(qū)的試題,預(yù)計(jì)2007年除了繼續(xù)考查自變量的取值范圍及自變量與因變量之間的變化圖像,一次函數(shù)的圖像和性質(zhì),在實(shí)際問(wèn)題中考查對(duì)反比例函數(shù)的概念及性質(zhì)的理解同時(shí)將注重考查二次函數(shù),特別是二次函數(shù)的在實(shí)際生活中應(yīng)用初中數(shù)學(xué)助記口訣(函數(shù)部分)特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。對(duì)稱(chēng)點(diǎn)坐標(biāo):對(duì)稱(chēng)點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱(chēng)y相反,Y軸對(duì)稱(chēng),x前面添負(fù)號(hào);原點(diǎn)對(duì)稱(chēng)最好記,橫縱坐標(biāo)變符號(hào)。自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全
22、能行。函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b、二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣“同左上加,異右下減”。一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線(xiàn),圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線(xiàn);兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線(xiàn)離橫軸就越遠(yuǎn)。二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線(xiàn),圖象對(duì)稱(chēng)是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線(xiàn),左同
23、右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱(chēng)軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線(xiàn)相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線(xiàn)越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。正比例函數(shù)是直線(xiàn),圖象一定過(guò)圓點(diǎn),k的正負(fù)是關(guān)鍵,決定直線(xiàn)的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線(xiàn),向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線(xiàn),選定系數(shù)是關(guān)鍵。反比例函數(shù)雙曲線(xiàn),待定只需一個(gè)點(diǎn),正k
24、落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱(chēng)軸是角分線(xiàn)x、y的順序可交換。二次函數(shù)拋物線(xiàn),選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線(xiàn)平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。1. 一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào);同類(lèi)項(xiàng)、合并好,再把系數(shù)來(lái)除掉;兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。2. 特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。3. 平行某軸的直線(xiàn):平行某軸的直線(xiàn),點(diǎn)的
25、坐標(biāo)有講究,直線(xiàn)平行X軸,縱坐標(biāo)相等橫不同; 直線(xiàn)平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。4. 對(duì)稱(chēng)點(diǎn)坐標(biāo):對(duì)稱(chēng)點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱(chēng)y相反, Y軸對(duì)稱(chēng),x前面添負(fù)號(hào); 原點(diǎn)對(duì)稱(chēng)最好記,橫縱坐標(biāo)變符號(hào)。5. 自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。6. 函數(shù)圖像的移動(dòng)規(guī)律: 若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b,二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。7. 一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線(xiàn),圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)
26、一直線(xiàn);兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線(xiàn)離橫軸就越遠(yuǎn)。 8. 二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線(xiàn),圖象對(duì)稱(chēng)是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線(xiàn),左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱(chēng)軸位置, 符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。9. 反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線(xiàn)相背離的遠(yuǎn);k為正,圖
27、在一、三(象)限;k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減;圖在二、四正相反,兩個(gè)分支分別添;線(xiàn)越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。函數(shù)學(xué)習(xí)口決:正比例函數(shù)是直線(xiàn),圖象一定過(guò)原點(diǎn),k的正負(fù)是關(guān)鍵,決定直線(xiàn)的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線(xiàn),向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線(xiàn),選定系數(shù)是關(guān)鍵;反比例函數(shù)雙曲線(xiàn),待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱(chēng)軸是角分線(xiàn)x、y的順序可交換;二次函數(shù)拋物線(xiàn),選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線(xiàn)平移a
28、不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。10. 求定義域: 求定義域有講究,四項(xiàng)原則須留意。 負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。 指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。 限制條件不唯一,滿(mǎn)足多個(gè)不等式。 求定義域要過(guò)關(guān),四項(xiàng)原則須注意。 負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。 分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。 限制條件不唯一,不等式組求解集。11. 解一元一次不等式: 先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。 系數(shù)化“1”有講究,同乘除負(fù)要變向。 先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。 同類(lèi)各項(xiàng)去合并,系數(shù)化“1”注意了。 同乘除正無(wú)防礙,同乘除負(fù)也變號(hào)。 12. 解一元一次不等式組: 大于頭來(lái)小于尾,大
29、小不一中間找。 大大小小沒(méi)有解,四種情況全來(lái)了。 同向取兩邊,異向取中間。 中間無(wú)元素,無(wú)解便出現(xiàn)。 幼兒園小鬼當(dāng)家,(同小相對(duì)取較小) 敬老院以老為榮,(同大就要取較大) 軍營(yíng)里沒(méi)老沒(méi)少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 13. 解一元二次不等式: 首先化成一般式,構(gòu)造函數(shù)第二站。 判別式值若非負(fù),曲線(xiàn)橫軸有交點(diǎn)。 a正開(kāi)口它向上,大于零則取兩邊。 代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。 方程若無(wú)實(shí)數(shù)根,口上大零解為全。 小于零將沒(méi)有解,開(kāi)口向下正相反。 13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。 確定參數(shù)abc,計(jì)算
30、方程判別式。 判別式值與零比,有無(wú)實(shí)根便得知。 有實(shí)根可套公式,沒(méi)有實(shí)根要告之。 14. 用常規(guī)配方法解一元二次方程: 左未右已先分離,二系化“1”是其次。 一系折半再平方,兩邊同加沒(méi)問(wèn)題。 左邊分解右合并,直接開(kāi)方去解題。 該種解法叫配方,解方程時(shí)多練習(xí)。15. 用間接配方法解一元二次方程: 已知未知先分離,因式分解是其次。 調(diào)整系數(shù)等互反,和差積套恒等式。 完全平方等常數(shù),間接配方顯優(yōu)勢(shì) 【注】 恒等式 16. 解一元二次方程: 方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想。 如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量。 b、c相等都為零,等根是零不要忘。 b、c同時(shí)不為零,因式分解或配方, 也可直接套公式,因題而
31、異擇良方。17. 正比例函數(shù)的鑒別: 判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。 一量表示另一量, 有沒(méi)有。 若有再去看取值,全體實(shí)數(shù)都需要。 區(qū)分正比例函數(shù),衡量可分兩步走。 一量表示另一量, 是與否。 若有還要看取值,全體實(shí)數(shù)都要有。 18. 正比例函數(shù)的圖象與性質(zhì): 正比函數(shù)圖直線(xiàn),經(jīng)過(guò) 和原點(diǎn)。 K正一三負(fù)二四,變化趨勢(shì)記心間。 K正左低右邊高,同大同小向爬山。 K負(fù)左高右邊低,一大另小下山巒。19. 一次函數(shù): 一次函數(shù)圖直線(xiàn),經(jīng)過(guò) 點(diǎn)。 K正左低右邊高,越走越高向爬山。 K負(fù)左高右邊低,越來(lái)越低很明顯。 K稱(chēng)斜率b截距,截距為零變正函。 20. 反比例函數(shù): 反比函數(shù)雙曲線(xiàn),經(jīng)過(guò) 點(diǎn)。 K正
32、一三負(fù)二四,兩軸是它漸近線(xiàn)。 K正左高右邊低,一三象限滑下山。 K負(fù)左低右邊高,二四象限如爬山。 21. 二次函數(shù): 二次方程零換y,二次函數(shù)便出現(xiàn)。 全體實(shí)數(shù)定義域,圖像叫做拋物線(xiàn)。 拋物線(xiàn)有對(duì)稱(chēng)軸,兩邊單調(diào)正相反。 A定開(kāi)口及大小,線(xiàn)軸交點(diǎn)叫頂點(diǎn)。 頂點(diǎn)非高即最低。上低下高很顯眼。 如果要畫(huà)拋物線(xiàn),平移也可去描點(diǎn), 提取配方定頂點(diǎn),兩條途徑再挑選。 列表描點(diǎn)后連線(xiàn),平移規(guī)律記心間。 左加右減括號(hào)內(nèi),號(hào)外上加下要減。 二次方程零換y,就得到二次函數(shù)。 圖像叫做拋物線(xiàn),定義域全體實(shí)數(shù)。 A定開(kāi)口及大小,開(kāi)口向上是正數(shù)。 絕對(duì)值大開(kāi)口小,開(kāi)口向下A負(fù)數(shù)。 拋物線(xiàn)有對(duì)稱(chēng)軸,增減特性可看圖。 線(xiàn)軸交
33、點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。 如果要畫(huà)拋物線(xiàn),描點(diǎn)平移兩條路。 提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。 列表描點(diǎn)后連線(xiàn),三點(diǎn)大致定全圖。 若要平移也不難,先畫(huà)基礎(chǔ)拋物線(xiàn), 頂點(diǎn)移到新位置,開(kāi)口大小隨基礎(chǔ)。 【注】基礎(chǔ)拋物線(xiàn)22. 列方程解應(yīng)用題: 列方程解應(yīng)用題,審設(shè)列解雙檢答。 審題弄清已未知,設(shè)元直間兩辦法。 列表畫(huà)圖造方程,解方程時(shí)守章法。 檢驗(yàn)準(zhǔn)且合題意,問(wèn)求同一才作答。23. 兩點(diǎn)間距離公式: 同軸兩點(diǎn)求距離,大減小數(shù)就為之。 與軸等距兩個(gè)點(diǎn),間距求法亦如此。 平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。 差方相加開(kāi)平方,距離公式要牢記。五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開(kāi)口方向、對(duì)稱(chēng)軸
34、及頂點(diǎn)坐標(biāo),然后在對(duì)稱(chēng)軸兩側(cè),左右對(duì)稱(chēng)地描點(diǎn)畫(huà)圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)、與軸的交點(diǎn),(若與軸沒(méi)有交點(diǎn),則取兩組關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)).畫(huà)草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱(chēng)軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).五、二次函數(shù)的性質(zhì) 1. 當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,對(duì)稱(chēng)軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而減??;當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),有最小值 2. 當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,對(duì)稱(chēng)軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),隨的增大而減小;當(dāng)時(shí),有最大值六、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點(diǎn)式:(,為常數(shù),);3. 兩根式:(,是拋物線(xiàn)與軸兩
35、交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫(xiě)成交點(diǎn)式,只有拋物線(xiàn)與軸有交點(diǎn),即時(shí),拋物線(xiàn)的解析式才可以用交點(diǎn)式表示二次函數(shù)解析式的這三種形式可以互化.七、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系 1. 二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然 當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,的值越大,開(kāi)口越小,反之的值越小,開(kāi)口越大; 當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,的值越小,開(kāi)口越小,反之的值越大,開(kāi)口越大總結(jié)起來(lái),決定了拋物線(xiàn)開(kāi)口的大小和方向,的正負(fù)決定開(kāi)口方向,的大小決定開(kāi)口的大小2. 一次項(xiàng)系數(shù) 在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線(xiàn)的對(duì)稱(chēng)軸 在的前提下,當(dāng)時(shí),即拋物線(xiàn)的對(duì)稱(chēng)軸在軸左側(cè);ab同號(hào)同左上加當(dāng)時(shí),即拋物線(xiàn)的對(duì)稱(chēng)軸就是軸;當(dāng)時(shí),即拋物線(xiàn)對(duì)稱(chēng)軸在軸的右側(cè)a,b異號(hào)異右下減 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時(shí),即拋物線(xiàn)的對(duì)稱(chēng)軸在軸右側(cè);a,b異號(hào)異右下減當(dāng)時(shí),即拋物線(xiàn)的對(duì)稱(chēng)軸就是軸;當(dāng)時(shí),即拋物線(xiàn)對(duì)稱(chēng)軸在軸的左側(cè)ab同號(hào)同左上加總結(jié)起來(lái),在確定的前提下,決定了拋物線(xiàn)對(duì)稱(chēng)軸的位置總結(jié): 同左上加 異右下減 3. 常數(shù)項(xiàng) 當(dāng)時(shí),拋物線(xiàn)與軸的交點(diǎn)在軸上方,即拋物線(xiàn)與軸交點(diǎn)的縱坐標(biāo)為正; 當(dāng)時(shí),拋物線(xiàn)與軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線(xiàn)與軸交點(diǎn)的縱坐標(biāo)為; 當(dāng)時(shí),拋物線(xiàn)與軸的交點(diǎn)在軸下方,即拋物線(xiàn)與軸交點(diǎn)的縱坐標(biāo)為負(fù) 總結(jié)起來(lái),決
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年股權(quán)融資合同:中小企業(yè)擴(kuò)展版圖3篇
- 2024設(shè)計(jì)費(fèi)合同范本:科技館互動(dòng)展項(xiàng)設(shè)計(jì)專(zhuān)約3篇
- 2024年精煉煤炭購(gòu)銷(xiāo)標(biāo)準(zhǔn)協(xié)議模版一
- 2025年度藝術(shù)品拍賣(mài)居間合同范本3篇
- 2025年度出口合同履行中的匯率波動(dòng)應(yīng)對(duì)與風(fēng)險(xiǎn)管理協(xié)議3篇
- 2024年魚(yú)塘租賃與管理合同典范2篇
- 2025年度綠色廠房租賃中介服務(wù)費(fèi)合同范本3篇
- 2024年物流服務(wù)合同:跨境電商B2C業(yè)務(wù)的物流解決方案
- 2024年高性能計(jì)算機(jī)硬件采購(gòu)與銷(xiāo)售合同一
- 2024年跨界電商合作框架協(xié)議
- 2022年長(zhǎng)春市中小學(xué)教師筆試試題
- 肉牛肉羊屠宰加工項(xiàng)目選址方案
- 清洗劑msds清洗劑MSDS
- 中學(xué)數(shù)學(xué)教學(xué)案例
- 同等學(xué)力申碩英語(yǔ)詞匯400題及解析
- 大二上學(xué)期 植物地理學(xué)ppt課件5.3 植物生活與環(huán)境-溫度條件(正式)
- 人教版七年級(jí)上冊(cè)數(shù)學(xué)第一章有理數(shù)計(jì)算題訓(xùn)練(無(wú)答案)
- 新能源發(fā)電技術(shù)教學(xué)大綱
- 微生物在農(nóng)業(yè)上的應(yīng)用技術(shù)課件
- 國(guó)家自然科學(xué)基金申請(qǐng)書(shū)填寫(xiě)課件
- 各種面料服裝用洗滌標(biāo)志及說(shuō)明
評(píng)論
0/150
提交評(píng)論