高考試題分類(lèi)匯編及答案_第1頁(yè)
高考試題分類(lèi)匯編及答案_第2頁(yè)
高考試題分類(lèi)匯編及答案_第3頁(yè)
高考試題分類(lèi)匯編及答案_第4頁(yè)
高考試題分類(lèi)匯編及答案_第5頁(yè)
已閱讀5頁(yè),還剩88頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、山東省八年高考試題分類(lèi)匯編(2005年2012年)前言我認(rèn)為學(xué)好數(shù)學(xué)要做到八方聯(lián)系,渾然一體,高屋建瓴,游刃有余,知己知彼,百戰(zhàn)百勝!1、八方聯(lián)系,渾然一體,知識(shí)點(diǎn)網(wǎng)絡(luò)總結(jié)法山東理科狀元,高考總分:717分,考入:清華大學(xué)的張振同學(xué)。介紹到:“我學(xué)習(xí)數(shù)學(xué)的第一個(gè)方法是知識(shí)點(diǎn)網(wǎng)絡(luò)總結(jié)法。平時(shí)做數(shù)學(xué)題時(shí),一些題目往往會(huì)讓我們感覺(jué)到無(wú)從下手,這個(gè)時(shí)候如果我們能聯(lián)想到這道題目所考察的知識(shí)點(diǎn),就可以以此為線索對(duì)癥下藥,找到解題的突破口。所謂的知識(shí)點(diǎn)網(wǎng)絡(luò)總結(jié)法就是在平時(shí)做題時(shí),如果遇到解答中出現(xiàn)困難的題目,就將與這道題目有關(guān)的解題方法和所考查的知識(shí)點(diǎn)在題目的旁邊列出來(lái),然后在本子上總結(jié)出來(lái)。這樣經(jīng)過(guò)一段時(shí)

2、間的訓(xùn)練,在考試的時(shí)候看到題目就能聯(lián)想到有關(guān)的知識(shí)點(diǎn),并迅速找到相應(yīng)的解題方法。使用這種方法一方面可以提高解題速度,為考生節(jié)約不少時(shí)間,另一方面做題的正確率很高,提高了解題命中率?!卑衙空碌闹R(shí)每個(gè)單元每個(gè)專(zhuān)題的知識(shí)形成網(wǎng)絡(luò),通過(guò)網(wǎng)絡(luò)可以掌握基本知識(shí)、基本題型、基本方法,每個(gè)知識(shí)點(diǎn)每個(gè)方法都不會(huì)落下,對(duì)解決綜合題特別有幫助,以一個(gè)全局的觀念來(lái)看待每一個(gè)單元的知識(shí)點(diǎn),綜合題一般是知識(shí)點(diǎn)的復(fù)合,每個(gè)知識(shí)點(diǎn)一般不會(huì)很難,但是綜合一塊就不能攻克了,綜合題的解決方法是:把文字語(yǔ)言轉(zhuǎn)化成符號(hào)語(yǔ)言或圖形語(yǔ)言,通過(guò)數(shù)學(xué)的解題方法(換元法、數(shù)形結(jié)合、化歸轉(zhuǎn)化等)逐步完成。很重要的一點(diǎn)還有就是當(dāng)天內(nèi)容及時(shí)復(fù)習(xí),艾

3、賓浩斯遺忘規(guī)律圖很好的告訴我們這一點(diǎn)的重要性。2、高屋建瓴,游刃有余高考真題總結(jié)規(guī)律法(理科高考狀元),把山東省8年考高試題做3遍。第一遍是在一輪復(fù)習(xí)時(shí),同步做分類(lèi)匯編。第二遍是在二輪復(fù)習(xí),重點(diǎn)研究那些較難的題目,一個(gè)小時(shí)做45道較難的解答題,已經(jīng)相當(dāng)不錯(cuò)了。同時(shí)注意重點(diǎn)訓(xùn)練自己的弱項(xiàng)。這一時(shí)期能做多少題就做多少題,不要犯懶,勝利就在前方了。第三遍是在高考前15天左右,主要是回歸基礎(chǔ),主要做本地的高考題,研究出題思路。很重要的學(xué)習(xí)方法三遍理論,就是典型題反復(fù)練。記得一位高考狀元說(shuō)過(guò)學(xué)習(xí)方法三大法寶“緊跟老師,多次重復(fù),重視每一次考試?!睂?duì)于自己的薄弱環(huán)節(jié)選取老師課堂講過(guò)的典型題,一定要練三遍,

4、隔兩天練一遍,再隔三天練一遍,這樣你的薄弱環(huán)節(jié)就會(huì)成為強(qiáng)項(xiàng)了。青島港的全國(guó)勞模徐振超說(shuō)過(guò)一句話“重復(fù)中也可以創(chuàng)造奇跡!”3、錯(cuò)題分析法題如山書(shū)如海,求學(xué)之舟何處擺。通過(guò)大量習(xí)題把你的錯(cuò)誤發(fā)現(xiàn)出來(lái),分析出錯(cuò)原因,減少馬虎錯(cuò)題,馬虎錯(cuò)題是一種不良的學(xué)習(xí)習(xí)慣,需要克服。錯(cuò)題的原因:知識(shí)點(diǎn)沒(méi)有掌握,解題方法沒(méi)有靈活掌握和使用,解決措施:找出配套相同類(lèi)型的練習(xí)題,做大量的反復(fù)式的滾動(dòng)復(fù)習(xí),根據(jù)這個(gè)錯(cuò)題與之有關(guān)的相同題型多做幾道,加以鞏固,一旦掌握了這種習(xí)題習(xí)慣的出題方式和答題的方法,這個(gè)錯(cuò)題就被攻破了。4、普通解題法:數(shù)學(xué)學(xué)習(xí)必須關(guān)注通性通法,注重基礎(chǔ)題目,不要光鉆那些難題,通法會(huì)有固定的解題思路,上課

5、時(shí)要充分領(lǐng)會(huì),課下選一些類(lèi)似的題目。前面的基礎(chǔ)題一旦有錯(cuò),就會(huì)導(dǎo)致45分的失分,會(huì)與別人的差距拉大,而最后的壓軸題大部分人都不會(huì)做。再有一點(diǎn)就是注重知識(shí)的形成過(guò)程。例如:2011年陜西省高考試題敘述并證明余弦定理,2010年四川省高考試題證明兩角差的余弦公式。學(xué)習(xí)數(shù)學(xué)的三種境界:知其然,知其所以然,知其何由以其所以然。俞敏洪曾經(jīng)說(shuō)過(guò):人的生活方式有兩種,第一種是像草一樣活著,你盡管活著,每年還在生長(zhǎng),但是你畢竟是一棵草,你吸收雨露陽(yáng)光,但是長(zhǎng)不大。人們可以踩過(guò)你,但是人們不會(huì)因?yàn)槟愕耐纯啵屗a(chǎn)生痛苦;人們不會(huì)因?yàn)槟惚徊攘?,而?lái)憐憫你,因?yàn)槿藗儽旧砭蜎](méi)有看到你。所以我們每一個(gè)人都應(yīng)該像樹(shù)一樣

6、成長(zhǎng),即使我們現(xiàn)在什么都不是,但是只要你有樹(shù)的種子,即使你被踩到泥土中間,你依然能夠吸收泥土的養(yǎng)分,自己成長(zhǎng)起來(lái)。當(dāng)你長(zhǎng)成參天大樹(shù)的時(shí)候,遙遠(yuǎn)的地方,人們就能看到你;走進(jìn)你,你能給人一片綠色?;钪敲利惖娘L(fēng)景,死了依然是棟梁之材,活著死了都有用,我希望這就是我們每一個(gè)同學(xué)做人的標(biāo)準(zhǔn)和成長(zhǎng)的標(biāo)準(zhǔn)?。▽?zhuān)題一)函數(shù)與導(dǎo)數(shù)山東省歷年高考理科試題2012年山東理科:3 設(shè)a0 a1 ,則“函數(shù)f(x)= ax在R上是減函數(shù) ”,是“函數(shù)g(x)=(2-a) 在R上是增函數(shù)”的A 充分不必要條件 B 必要不充分條件 C 充分必要條件 D 既不充分也不必要條件(8)定義在R上的函數(shù)f(x)滿(mǎn)足f(x+6)=

7、f(x),當(dāng)-3x-1時(shí),f(x)=-(x+2)2,當(dāng)-1x3時(shí),f(x)=x。則f(1)+f(2)+f(3)+f(2012)=(A)335(B)338(C)1678(D)2012(9)函數(shù)的圖像大致為(12)設(shè)函數(shù)(x)=,g(x)=ax2+bx若y=f(x)的圖像與y=g(x)圖像有且僅有兩個(gè)不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0B. 當(dāng)a<0時(shí), x1+x2>0, y1+y2<0C.當(dāng)a>0時(shí),x1+x2<0, y1+y2<0D. 當(dāng)a>0時(shí),x1+x2&

8、gt;0, y1+y2>022(本小題滿(mǎn)分13分)已知函數(shù)f(x) = (k為常數(shù),e=2.71828是自然對(duì)數(shù)的底數(shù)),曲線y= f(x)在點(diǎn)(1,f(1))處的切線與x軸平行。()求k的值;()求f(x)的單調(diào)區(qū)間;()設(shè)g(x)=(x2+x) ,其中為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x0,。2011年山東理科:(3)若點(diǎn)(a,9)在函數(shù)的圖象上,則tan=的值為:(A)0 (B) (C)1 (D)(4)不等式|x-5|+|x+3|10的解集是 (A)-5,7 (B)-4,6 (C)(-,-57,+) (D)(-,-46,+)(5)對(duì)于函數(shù)y=f(x),xR,“y=|f(x)|的圖像關(guān)

9、于y軸”是“y=f(x)是奇函數(shù)”的 (A)充分而不必要條件 (B)必要而不充分條件 (C)充要條件 (D)既不充分也不必要條件(9)函數(shù)的圖象大致是 (10)已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0x2時(shí),f(x)=x3-x,則函數(shù)y=f(x)的圖像在區(qū)間0,6上與x軸的交點(diǎn)個(gè)數(shù)為 (A)6(B)7(C)8(D)9(15)設(shè)函數(shù)(x0),觀察:f2 (x)=f(f1(x))= f3 (x)=f(f2(x))= f4 (x)=f(f3(x))= 根據(jù)以上事實(shí),由歸納推理可得:當(dāng)nN*且n2時(shí),fm(x)=f(fm-1(x)= . (16)已知函數(shù)=當(dāng)2a3b4時(shí),函數(shù)的零點(diǎn) . (2

10、1)(本小題滿(mǎn)分12分)某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為千元.設(shè)該容器的建造費(fèi)用為千元.()寫(xiě)出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;()求該容器的建造費(fèi)用最小時(shí)的.2010年山東理科:(4)設(shè)為定義在R上的奇函數(shù),當(dāng)時(shí),為常數(shù)),則(A)3(B)1(C)-1(D)-3(7)由曲線圍成的封閉圖形面積為(A)(B)(C)(D)(11)函數(shù)的圖象大致是(A)(B)(C)(D)(14)若對(duì)任意恒

11、成立,則的取值范圍是 。(22)(本小題滿(mǎn)分14分)已知函數(shù). ()當(dāng)時(shí),討論的單調(diào)性; ()設(shè)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.2009年山東理科:(6)函數(shù)的圖象大致為(10) 定義在R上的函數(shù)滿(mǎn)足,則的值為(A)-1 (B) 0 (C) 1 (D) 2(13)不等式 的解集為 . (14)若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是 .(16)已知定義在R上的奇函數(shù)滿(mǎn)足,且在區(qū)間0,2上是增函數(shù).若方程在區(qū)間-8,8上有四個(gè)不同的根則 .(21)兩縣城A和B相距20Km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城A和城B

12、的總影響度為對(duì)城A與對(duì)城B的影響度之和。記C點(diǎn)到城A的距離xKm,建在C處的垃圾處理廠對(duì)城B的影響度為Y,統(tǒng)計(jì)調(diào)查表明;垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城B的平方成反比,比例系數(shù)為4;城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為K,當(dāng)垃圾處理廠建在弧的中點(diǎn)時(shí),對(duì)城A和城B)總影響度為0.065()將Y表示成X的函數(shù);w.w.w.k.s.5.u.c.o.m ()討論()中函數(shù)的單調(diào)性,并判斷弧上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最?。咳舸嬖?,求出該點(diǎn)城A的距離;若不存在,說(shuō)明理由。2008年山東理科:(3)函數(shù)ylncosx(-x)的圖象是(4)設(shè)函數(shù)f

13、(x)x+1+x-a的圖象關(guān)于直線x1對(duì)稱(chēng),則a的值為(A) 3 (B)2 (C)1 (D)-1(14)設(shè)函數(shù)f(x)=ax2+c(a0).若,0x01,則x0的值為 .(16)若不等式3x-b4的解集中的整數(shù)有且僅有1,2,3,則b的取值范圍為 .(21)(本小題滿(mǎn)分12分)已知函數(shù)其中nN*,a為常數(shù).()當(dāng)n=2時(shí),求函數(shù)f(x)的極值;()當(dāng)a=1時(shí),證明:對(duì)任意的正整數(shù)n,當(dāng)x2時(shí),有f(x)x-1.2007年山東理科:4 設(shè),則使函數(shù)的定義域?yàn)镽且為奇函數(shù)的所有值為(A) (B) (C) (D) 6 給出下列三個(gè)等式:,。下列函數(shù)中不滿(mǎn)足其中任何一個(gè)等式的是(A) (B) (C)

14、(D) 16 函數(shù)的圖象恒過(guò)定點(diǎn),若點(diǎn)在直線上,其中,則的最小值為_(kāi).22(本小題滿(mǎn)分14分)設(shè)函數(shù),其中.(I)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性; (II)求函數(shù)的極值點(diǎn);(III)證明對(duì)任意的正整數(shù),不等式都成立.2006年山東理科:(6)已知定義在R上的奇函數(shù)滿(mǎn)足,則的值為(A)1(B)0(C)1(D)2(9)已知集合,從這三個(gè)集合各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為(A)33(B)34(C)35(D)3618、設(shè)函數(shù)其中1,求的單調(diào)區(qū)間.2005年山東理科:(4)下列函數(shù)中既是奇函數(shù),又是區(qū)間上單調(diào)遞減的是(A) (B) (C) (D) (6)函數(shù)若則的所有

15、可能值為(A) (B) (C) , (D) ,(19) (本小題滿(mǎn)分12分) 已知是函數(shù)的一個(gè)極值點(diǎn),其中.()求m與n的關(guān)系表達(dá)式; ()求的單調(diào)區(qū)間;()當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍(專(zhuān)題二)三角函數(shù)(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2012年山東理科: (7)若, ,則sin=(A)(B)(C)(D)CD(16)如圖,在平面直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在(0,1),此時(shí)圓上一點(diǎn)P的位置在(0,0),圓在x軸上沿正向滾動(dòng)。當(dāng)圓滾動(dòng)到圓心位于(2,1)時(shí),的坐標(biāo)為_(kāi)。(17)(本小題滿(mǎn)分12分)已知向量m=(sinx,1),函數(shù)f(

16、x)=m·n的最大值為6.()求A;()將函數(shù)y=f(x)的圖象像左平移個(gè)單位,再將所得圖象各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象。求g(x)在上的值域。2011年山東理科:(6)若函數(shù) (>0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則= (A)3 (B)2 (C) (D)(17)(本小題滿(mǎn)分12分)在ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.()求的值;()若cosB=,b=2, 求ABC的面積S.2010年山東理科:(15)在中,角A,B,C所對(duì)的邊分別為,若,則角A的大小為 。(17)(本小題滿(mǎn)分12分)已知函數(shù),其圖象過(guò)點(diǎn) ()求的

17、值; ()將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值。2009年山東理科:(3) 將函數(shù)y=的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,所得圖像的函數(shù)解析式是 (A)y= (B)y= (C)y=1+ (D)y=(17)(本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效) 設(shè)函數(shù)。()求函數(shù)的最大值和最小正周期;w.w.w.k.s.5.u.c.o.m ()設(shè)A,B,C為的三個(gè)內(nèi)角,若,且C為銳角,求。2008年山東理科:(5)已知cos(-)+sin=(A)-(B) (C)- (D) (15)已知a,b,c為ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m(

18、),n(cosA,sinA).若mn,且acosB+bcosA=csinC,則角B .(17)(本小題滿(mǎn)分12分)已知函數(shù)f(x)為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為()求f()的值;()將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)舒暢長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.2007年山東理科:5 函數(shù)的最小正周期和最大值分別為(A) (B) (C) (D) (20)(本小題滿(mǎn)分12分) 如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105&#

19、176;方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A1處時(shí),乙船航行到甲船的北偏西120°方向的B1處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?2006年山東理科:(4)在ABC中,角A、B、C的對(duì)邊分別為a,b,c,已知,c=(A)1(B)2(C)1(D)17.已知函數(shù),且的最大值為2,其圖象相鄰兩對(duì)稱(chēng)軸間的距離為2,并過(guò)點(diǎn)(1,2). ()求;()計(jì)算.2005年山東理科:(3)已知函數(shù)則下列判斷正確的是(A)此函數(shù)的最小正周期為,其圖象的一個(gè)對(duì)稱(chēng)中心是 (B) 此函數(shù)的最小正周期為,其圖象的一個(gè)對(duì)稱(chēng)中心是 (C) 此函數(shù)的最小正周期為,其圖象的一個(gè)對(duì)稱(chēng)中

20、心是 (D) 此函數(shù)的最小正周期為,其圖象的一個(gè)對(duì)稱(chēng)中心是(17)(本小題滿(mǎn)分12分)已知向量和,且,求的值(專(zhuān)題三)數(shù)列(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2012年山東理科:(20)(本小題滿(mǎn)分12分)在等差數(shù)列an中,a3+a4+a5=84,a9=73.()求數(shù)列an的通項(xiàng)公式;()對(duì)任意mN,將數(shù)列an中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列bm的前m項(xiàng)和Sm。2011年山東理科:(20)(本小題滿(mǎn)分12分)等比數(shù)列中,分別是下表第一、二、三行中的某一個(gè)數(shù),且中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818()求數(shù)列的通

21、項(xiàng)公式;()若數(shù)列滿(mǎn)足:,求數(shù)列的前n項(xiàng)和Sn.2010年山東理科:(9)設(shè)是等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的(A)充分而不必要條件(B)必要而不充分條件(C)充分必要條件(D)既不充分也不必要條件(18)(本小題滿(mǎn)分12分)已知等差數(shù)列滿(mǎn)足:的前項(xiàng)和為 ()求及; ()令,求數(shù)列的前項(xiàng)和2009年山東理科:20(本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效)等比數(shù)列的前n項(xiàng)和為,已知對(duì)任意的,點(diǎn)均在函數(shù)的圖象上。()求r的值。()當(dāng)b=2時(shí),記 w.w.w.k.s.5.u.c.o.m 證明:對(duì)任意的,不等式成立2008年山東理科: (19)(本小題滿(mǎn)分12分)將數(shù)列an中的所有項(xiàng)按每一

22、行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:a1a2 a3a4 a5 a6a7 a8 a9 a10記表中的第一列數(shù)a1,a2,a4,a7,構(gòu)成的數(shù)列為bn,b1=a1=1. Sn為數(shù)列bn的前n項(xiàng)和,且滿(mǎn)足(n2).()證明數(shù)列成等差數(shù)列,并求數(shù)列bn的通項(xiàng)公式;()上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第k(k3)行所有項(xiàng)和的和.2007年山東理科:17(本小題滿(mǎn)分12分) 設(shè)數(shù)列滿(mǎn)足(I)求數(shù)列的通項(xiàng);(II)設(shè)求數(shù)列的前項(xiàng)和.2006年山東理科:已知點(diǎn)(在函數(shù)的圖象上,其中n=1,2,3,. ()證明數(shù)列是等比數(shù)列;()設(shè).,求及數(shù)列

23、的通項(xiàng); ()記,求數(shù)列的前n項(xiàng)和Sn,并證明2005年山東理科:(21) (本小題滿(mǎn)分12分)已知數(shù)列的首項(xiàng)前項(xiàng)和為,且(I)證明數(shù)列是等比數(shù)列;(II)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù)并比較與的大?。▽?zhuān)題四)立體幾何(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2012年山東理科:(14)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F分別為線段AA1,B1C上的點(diǎn),則三棱錐D1-EDF的體積為_(kāi)。(18)(本小題滿(mǎn)分12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,ABCD,DAB=60°,F(xiàn)C平面ABCD,AEBD,CB=CD=CF。()求證:BD平面AED;()求二面角F

24、-BD-C的余弦值。2011年山東理科:(11)右圖是長(zhǎng)和寬分別相等的兩個(gè)矩形給定下列三個(gè)命題:存在三棱柱,其正(主)視圖、俯視圖如右圖;存在四棱柱,其正(主)視圖、俯視圖如下圖;存在圓柱,其正(主)視圖、俯視圖如下圖其中真命題的個(gè)數(shù)是(A)3 (B)2 (C)1 (D)0()(本小題滿(mǎn)分12分)在如圖所示的幾何體中,四邊形ABCD為平行四邊形, ACB=,  平面,EF,.=.()若是線段上的中點(diǎn),求證:  平面;()若-,求平面角-的大小2010年山東理科:(3)在空間,下列命題正確的是(A)平行直線的平行投影重合(B)平行于同一直線的兩個(gè)

25、平面平行(C)垂直于同一平面的兩個(gè)平面平行(D)垂直于同一平面的兩條直線平行(19)(本小題滿(mǎn)分12分)如圖,在五棱錐PABCDE中,平面ABCDE,AB/CD,AC/ED,AE/BC,三角形PAB是等腰三角形。 ()求證:平面PCD 平面PAC; ()求直線PB與平面PCD所成角的大??; ()求四棱錐PACDE的體積。2009年山東理科:一、選擇題:本大題共12小題,每小題5分,共60分。每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。(4)一空間幾何體的三視圖如圖所示,則該幾何體的體積為(A) (B) (C) (D)(5)已知表示兩個(gè)不同的平面,m為平面內(nèi)的一條直線,則“”是“”的(A)

26、充分不必要條件 (B)必要不充分條件 (C)充要條件 (D)既不充分也不必要條件(18)(本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效)如圖,在直四棱柱中,底面ABCD為等腰梯形,ABCD,AB=4,BC=CD=2,=2,AB的中點(diǎn)。 ()證明:直線平面;w.w.w.k.s.5.u.c.o.m ()求二面角的余弦值。2008年山東理科:(6)右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(A)9(B)10(C)11 (D) 12(20)(本小題滿(mǎn)分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA平面ABCD,,E,F(xiàn)分別是BC, PC的中點(diǎn).()證明:AEPD;

27、()若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角EAFC的余弦值.2007年山東理科:3下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是(A) (B) (C) (D) 19(本小題滿(mǎn)分12分)如圖,在直四棱柱中,已知,.(I)設(shè)是的中點(diǎn),求證: ;(II)求二面角的余弦值.2006年山東理科:如圖,在等腰梯形ABCD中,AB=2DC=2,DAB=60°,E為AB的中點(diǎn),將ADE與BEC分別沿ED、EC向上拆起,使A、B重合于點(diǎn)P,則三棱錐PDCE的外接球的體積為(A)(B)(C)(D) (15)如圖,已知在正三棱柱ABCA1B1C1的所有棱長(zhǎng)都相等、D是則A1

28、C1的中點(diǎn),則直線AD與平面B1DC所成角的正弦值為 .(19)(本小題滿(mǎn)分12分) 如圖,已知平面A1B1C1平行于三棱錐VABC的底面ABC,等邊AB1C所在平面與底面ABC垂直,且ACB=90,設(shè)AC=2a,BC=a.()求證直線B1C1是異面直線AB1與A1C1的公垂線;()求點(diǎn)A到平面VBC的距離;()求二面角AVBC的大小2005年山東理科:(16)已知m、n是不同的直線,是不重合的平面,給出下列命題:若則 若則若,則m、n是兩條異面直線,若則上面命題中,真命題的序號(hào)是_(寫(xiě)出所有真命的序號(hào)) (20) (本小題滿(mǎn)分12分)如圖,已知長(zhǎng)方體,直線與平面所成的角為,垂直于為的中點(diǎn)()

29、求異面直線與所成的角;()求平面與平面所成二面角(銳角)的大??;()求點(diǎn)到平面的距離(專(zhuān)題五)解析幾何(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2012年山東理科:(10)已知橢圓C:的離心率為,雙曲線x²-y²1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為(21)(本小題滿(mǎn)分13分)在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為。()求拋物線C的方程;()是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求

30、出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;()若點(diǎn)M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng)k2時(shí),的最小值。2011年山東理科:(8)已知雙曲線(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為(A) (B)(C) (D)(22)(本小題滿(mǎn)分14分)已知直線l與橢圓C: 交于P.Q兩不同點(diǎn),且OPQ的面積S=,其中Q為坐標(biāo)原點(diǎn)。()證明X12+X22和Y12+Y22均為定值()設(shè)線段PQ的中點(diǎn)為M,求的最大值;()橢圓C上是否存在點(diǎn)D,E,G,使得SODE=SO

31、DG=SOEG若存在,判斷DEG的形狀;若不存在,請(qǐng)說(shuō)明理由。2010年山東理科:(10)設(shè)變量滿(mǎn)足約束條件則目標(biāo)函數(shù)的最大值和最小值分別為(A)3,-11(B)-3,-11(C)11,-3(D)11,3(16)已知圓C過(guò)點(diǎn)(1,0),且圓心在軸的正半軸上,直線被圓C所截得的弦長(zhǎng)為,則過(guò)圓心且與直線垂直的直線的方程為 。(21)(本小題滿(mǎn)分12分)如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為,一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于項(xiàng)點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)分別為A、B和C、D. ()求橢圓和雙曲線的標(biāo)準(zhǔn)方程; ()設(shè)直線、的斜率分別為、

32、,證明:; ()是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.2009年山東理科:(9)設(shè)雙曲線的一條漸近線與拋物線只有一個(gè)公共點(diǎn),則雙曲線的離心率為(A) (B) (C) (D) (12)設(shè)滿(mǎn)足約束條件若目標(biāo)函數(shù)的最大值為12,則的最小值為(A) (B) (C) (D) 4(22)(本小題滿(mǎn)分14分)(注意:在試題卷上作答無(wú)效) 設(shè)橢圓E:在橢圓E上,O為坐標(biāo)原點(diǎn) ()求橢圓E的方程; ()是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒在兩個(gè)交點(diǎn)A,B且?若存在,寫(xiě)出該圓的方程,關(guān)求的取值范圍;若不存在,說(shuō)明理由。2008年山東理科: (10)設(shè)橢圓C1的離心率為

33、,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為(A) (B)(C) (D)(11)已知圓的方程為x2+y2-6x-8y0.設(shè)該圓過(guò)點(diǎn)(3,5)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(A)10(B)20(C)30(D)40(12)設(shè)二元一次不等式組所表示的平面區(qū)域?yàn)镸,使函數(shù)yax(a0,a1)的圖象過(guò)區(qū)域M的a的取值范圍是(A)1,3 (B)2, (C)2,9 (D),9(22)(本小題滿(mǎn)分14分)如圖,設(shè)拋物線方程為x2=2py(p0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B

34、.()求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;()已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),求此時(shí)拋物線的方程;()是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線上,其中,點(diǎn)C滿(mǎn)足(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.2007年山東理科:13 設(shè)是坐標(biāo)原點(diǎn),是拋物線的焦點(diǎn),是拋物線上的一點(diǎn),與軸正向的夾角為,則為_(kāi).14 設(shè)是不等式組表示的平面區(qū)域,則中的點(diǎn)到直線距離的最大值是_.15 與直線和曲線都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是_.21 (本小題滿(mǎn)分12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為3,最小值為1.(I)

35、求橢圓C的標(biāo)準(zhǔn)方程;(II)若直線與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).2006年山東理科:(7)在給定橢圓中,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為(A)(B)(C)(D)(11)某公司招收男職員x名,女職員y名,x和y須滿(mǎn)足約束條件則的最大值是(A)80(B)85(C)90(D)95(14)已知拋物線,過(guò)點(diǎn)P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則的最小值是 .21、雙曲線C與橢圓有相同的焦點(diǎn),直線為C的一條漸近線. ()求雙曲線C的方程;(

36、)過(guò)點(diǎn)P(0,4)的直線l,交雙曲線C于A、B兩點(diǎn),交x軸于Q點(diǎn)(Q點(diǎn)與C的頂點(diǎn)不重合),當(dāng)時(shí),求Q點(diǎn)的坐標(biāo).2005年山東理科:(12)設(shè)直線關(guān)于原點(diǎn)對(duì)稱(chēng)的直線為,若與橢圓的交點(diǎn)為A、B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使的面積為的點(diǎn)P的個(gè)數(shù)為(A) 1 (B) 2 (C) 3 (D)4(14)設(shè)雙曲線的右焦點(diǎn)為F,右準(zhǔn)線與兩條漸近線交于P、Q兩點(diǎn),如果是直角三角形,則雙曲線的離心率(15)設(shè)滿(mǎn)足約束條件則使得目標(biāo)函數(shù)的值最大的點(diǎn)是_ (22) (本小題滿(mǎn)分14分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,其中.(I)求動(dòng)圓圓心的軌跡的方程;(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng)

37、變化且為定值時(shí),證明直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)(專(zhuān)題六)概率統(tǒng)計(jì)(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2011年山東理科:(4)采用系統(tǒng)抽樣方法從960人中抽取32人做問(wèn)卷調(diào)查,為此將他們隨機(jī)編號(hào)為1,2,960,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為9.抽到的32人中,編號(hào)落入?yún)^(qū)間1,450的人做問(wèn)卷A,編號(hào)落入?yún)^(qū)間451,750的人做問(wèn)卷B,其余的人做問(wèn)卷C.則抽到的人中,做問(wèn)卷B的人數(shù)為(A)7 (B) 9 (C) 10 (D)15(11)現(xiàn)有16張不同的卡片,其中紅色、黃色、藍(lán)色、綠色卡片各4張,從中任取3張,要求這些卡片不能是同一種顏色,且紅色卡片至多1張,不同

38、取法的種數(shù)為(A)232 (B)252 (C)472 (D)484(19)(本小題滿(mǎn)分12分) 現(xiàn)有甲、乙兩個(gè)靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒(méi)有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒(méi)有命中得0分。該射手每次射擊的結(jié)果相互獨(dú)立。假設(shè)該射手完成以上三次射擊。()求該射手恰好命中一次得的概率;()求該射手的總得分X的分布列及數(shù)學(xué)期望EX2011年山東理科:(7)某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表 根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為(A)63.6萬(wàn)元 (B)65.5萬(wàn)元 (C)67.7萬(wàn)元 (D)72.0

39、萬(wàn)元(18)(本小題滿(mǎn)分12分)紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤(pán),已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤(pán)比賽結(jié)果相互獨(dú)立。()求紅隊(duì)至少兩名隊(duì)員獲勝的概率;()用表示紅隊(duì)隊(duì)員獲勝的總盤(pán)數(shù),求的分布列和數(shù)學(xué)期望.2010年山東理科:(5)已知隨機(jī)變量服從正態(tài)分布,若,則(A)0.477(B)0.628(C)0.954(D)0.977(6)樣本中共有五個(gè)個(gè)體,其值分別為,若該樣本的平均值為1,則樣本方差為(A)(B)(C)(D)2(8)某臺(tái)小型晚會(huì)由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在前兩位,節(jié)目乙不能排在

40、第一位,節(jié)目丙必須排在最后一位,該臺(tái)晚會(huì)節(jié)目演出順序的編排方案共有(A)36種(B)42種(C)48種(D)54種(20)(本小題滿(mǎn)分12分)某學(xué)校舉行知識(shí)競(jìng)賽,第一輪選拔共設(shè)有A、B、C、D四個(gè)問(wèn)題,規(guī)則如下:每位參加者計(jì)分器的初初始分均為10分,答對(duì)問(wèn)題A、B、C、D分別加1分、2分、3分、6分,答錯(cuò)任一題減2分每回答一題,計(jì)分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足14分時(shí),答題結(jié)束,淘汰出局;每位參加者按問(wèn)題A、B、C、D順序作答,直至答題結(jié)束.假設(shè)甲同學(xué)對(duì)問(wèn)題A、B、C、D回答正確的概率依

41、次為,且各題回答正確與否相互之間沒(méi)有影響. ()求甲同學(xué)能進(jìn)入下一輪的概率; ()用表示甲內(nèi)當(dāng)家本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求的分布列和數(shù)學(xué)期望E.注意:后面參考答案錯(cuò)誤,正確答案為:() ,()234P 2009年山東理科:(8)某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè)。右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是,樣本數(shù)據(jù)分組為已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是(A)90 (B)75 (C)60 (D)45(11)在區(qū)間上隨機(jī)取一個(gè)數(shù),的值介于0到之間的概率為 (A) (B) (C) (D)

42、 w.w.w.k.s.5.u.c.o.m (19)(本小題滿(mǎn)分12分) (注意:在試題卷上作答無(wú)效) 在某學(xué)校組織的一次藍(lán)球定點(diǎn)投藍(lán)訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投三次。某同學(xué)在A處的命中率為0.25,在B處的命中率為.該同學(xué)選擇先在A處投一球,以后都在B處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為 求的值;求隨機(jī)變量的數(shù)學(xué)期量;w.w.w.k.s.5.u.c.o.m 試比較該同學(xué)選擇都在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大小。2008年山東理科:(7)在某地的奧運(yùn)火炬?zhèn)鬟f

43、活動(dòng)中,有編號(hào)為1,2,3,18的18名火炬手.若從中任選3人,則選出的火炬手的編號(hào)能組成3為公差的等差數(shù)列的概率為(A)(B)(C)(D)29 115830 2631 0247(8)右圖是根據(jù)山東統(tǒng)計(jì)年整2007中的資料作成的1997年至2006年我省城鎮(zhèn)居民百戶(hù)家庭人口數(shù)的莖葉圖,圖中左邊的數(shù)字從左到右分別表示城鎮(zhèn)居民百戶(hù)家庭人口數(shù)的百位數(shù)字和十位數(shù)字,右邊的數(shù)字表示城鎮(zhèn)居民百戶(hù)家庭人口數(shù)的個(gè)位數(shù)字,從圖中可以得到1997年至2006年我省城鎮(zhèn)居民百戶(hù)家庭人口數(shù)的平均數(shù)為(A)304.6(B)303.6 (C)302.6 (D)301.6(9)(x-)12展開(kāi)式中的常數(shù)項(xiàng)為(A)-1320

44、(B)1320(C)-220 (D)220(18)(本小題滿(mǎn)分12分)甲乙兩隊(duì)參加奧運(yùn)知識(shí)競(jìng)賽,每隊(duì)3人,每人回答一個(gè)問(wèn)題,答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分。假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為且各人正確與否相互之間沒(méi)有影響.用表示甲隊(duì)的總得分.()求隨機(jī)變量分布列和數(shù)學(xué)期望;()用A表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用B表示“甲隊(duì)總得分大于乙隊(duì)總得分”這一事件,求P(AB).013141516171819秒頻率0.020.040.060.180.340.368某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與19秒之間,將測(cè)試結(jié)果按如下方式分成六組:每一組,

45、成績(jī)大于等于13秒且小于14秒;第二組,成績(jī)大于等于14秒且小于15秒;第六組,成績(jī)大于等于18秒且小于等于19秒右圖是按上述分組方法得到的頻率分布直方圖,設(shè)成績(jī)小于17秒的學(xué)生人數(shù)占全班人數(shù)的百分比為,成績(jī)大于等于15秒且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可以分析出和分別為( )ABCD2007年山東理科:12 位于坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下述規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位;移動(dòng)的方向?yàn)橄蛏匣蛳蛴?,并且向上、向右移?dòng)的概率都是.質(zhì)點(diǎn)P 移動(dòng)5次后位于點(diǎn)的概率為(A) (B) (C) (D) 18(本小題滿(mǎn)分12分)設(shè)分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個(gè)數(shù)(重根

46、按一個(gè)計(jì)).(I)求方程 有實(shí)根的概率;(II) 求的分布列和數(shù)學(xué)期望;(III)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有6的條件下,方程方程 有實(shí)根的概率.2006年山東理科:(20)(本小題滿(mǎn)分12分)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的9倍計(jì)分,每小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字,求:()取出的3個(gè)小球上的數(shù)字互不相同的概率;()隨機(jī)變量的概率分布和數(shù)學(xué)期望;()計(jì)分介于20分到40分之間的概率.2005年山東理科:(9)10張獎(jiǎng)券中只有3張有獎(jiǎng),5個(gè)人購(gòu)買(mǎi),每人1張,至少有1人中獎(jiǎng)的概率是(A) (B) (C) (D)(

47、18) (本小題滿(mǎn)分12分)袋中裝有羆球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個(gè)球,甲先取,乙后取,然后甲再取取后不放回,直到兩人中有一人取到白球時(shí)即終止每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用表示取球終止時(shí)所需的取球次數(shù)()求袋中原有白球的個(gè)數(shù);()求隨機(jī)變量的概率分布;()求甲取到白球的概率(專(zhuān)題七)集合、簡(jiǎn)易邏輯、算法、向量(理科專(zhuān)用)山東省歷年高考理科試題規(guī)律與分析2011年山東理科:1 若復(fù)數(shù)x滿(mǎn)足z(2-i)=11+7i(i為虛數(shù)單位),則z為A 3+5i B 3-5i C -3+5i D -3-5i 2 已知全集=0,1,2,3,4,集合A=

48、1,2,3,,B=2,4 ,則(CuA)B為A 1,2,4 B 2,3,4C 0,2,4 D 0,2,3,4(6)執(zhí)行下面的程序圖,如果輸入a=4,那么輸出的n的值為(A)2(B)3(C)4(D)5 (13)若不等式的解集為,則實(shí)數(shù)k=_。2011年山東理科:(1)設(shè)集合 M =x|x2+x-6<0,N =x|1x3,則MN =(A)1,2) (B)1,2 (C)( 2,3 (D)2,3(2)復(fù)數(shù)z=(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(12)設(shè),是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若 (R),(R),且,則稱(chēng),調(diào)和分割, ,已知點(diǎn)C(c,o),D(d,O) (c,dR)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說(shuō)法正確的是(A)C可能是線段AB的中點(diǎn) (B)D可能是線段AB的中點(diǎn)(C)C,D可能同時(shí)在線段AB上 (D)C,D不可能同時(shí)在線段AB的延長(zhǎng)線上(13)執(zhí)行右圖所示的程序框圖,輸入,m=3,n=5,則輸出的y的值是 . (14)若展開(kāi)式的常數(shù)項(xiàng)為60,則常數(shù)a的值為 .2010年山東理科:(1)已知全集U=R,集合,則(A)(B)(C)(D)(2)已知,其

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論