版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上橢圓標(biāo)準(zhǔn)方程典型例題例1 已知橢圓的一個(gè)焦點(diǎn)為(0,2)求的值分析:把橢圓的方程化為標(biāo)準(zhǔn)方程,由,根據(jù)關(guān)系可求出的值解:方程變形為因?yàn)榻裹c(diǎn)在軸上,所以,解得又,所以,適合故例2 已知橢圓的中心在原點(diǎn),且經(jīng)過點(diǎn),求橢圓的標(biāo)準(zhǔn)方程分析:因橢圓的中心在原點(diǎn),故其標(biāo)準(zhǔn)方程有兩種情況根據(jù)題設(shè)條件,運(yùn)用待定系數(shù)法,求出參數(shù)和(或和)的值,即可求得橢圓的標(biāo)準(zhǔn)方程解:當(dāng)焦點(diǎn)在軸上時(shí),設(shè)其方程為由橢圓過點(diǎn),知又,代入得,故橢圓的方程為當(dāng)焦點(diǎn)在軸上時(shí),設(shè)其方程為由橢圓過點(diǎn),知又,聯(lián)立解得,故橢圓的方程為例3 的底邊,和兩邊上中線長(zhǎng)之和為30,求此三角形重心的軌跡和頂點(diǎn)的軌跡分析:(1)由
2、已知可得,再利用橢圓定義求解(2)由的軌跡方程、坐標(biāo)的關(guān)系,利用代入法求的軌跡方程解: (1)以所在的直線為軸,中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系設(shè)點(diǎn)坐標(biāo)為,由,知點(diǎn)的軌跡是以、為焦點(diǎn)的橢圓,且除去軸上兩點(diǎn)因,有,故其方程為(2)設(shè),則 由題意有代入,得的軌跡方程為,其軌跡是橢圓(除去軸上兩點(diǎn))例4 已知點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)到兩焦點(diǎn)的距離分別為和,過點(diǎn)作焦點(diǎn)所在軸的垂線,它恰好過橢圓的一個(gè)焦點(diǎn),求橢圓方程解:設(shè)兩焦點(diǎn)為、,且,從橢圓定義知即從知垂直焦點(diǎn)所在的對(duì)稱軸,所以在中,可求出,從而所求橢圓方程為或例5 已知橢圓方程,長(zhǎng)軸端點(diǎn)為,焦點(diǎn)為,是橢圓上一點(diǎn),求:的面積(用、表示)分析:求面積要
3、結(jié)合余弦定理及定義求角的兩鄰邊,從而利用求面積解:如圖,設(shè),由橢圓的對(duì)稱性,不妨設(shè),由橢圓的對(duì)稱性,不妨設(shè)在第一象限由余弦定理知: 由橢圓定義知: ,則得 故 例6 已知?jiǎng)訄A過定點(diǎn),且在定圓的內(nèi)部與其相內(nèi)切,求動(dòng)圓圓心的軌跡方程分析:關(guān)鍵是根據(jù)題意,列出點(diǎn)P滿足的關(guān)系式解:如圖所示,設(shè)動(dòng)圓和定圓內(nèi)切于點(diǎn)動(dòng)點(diǎn)到兩定點(diǎn),即定點(diǎn)和定圓圓心距離之和恰好等于定圓半徑,即點(diǎn)的軌跡是以,為兩焦點(diǎn),半長(zhǎng)軸為4,半短軸長(zhǎng)為的橢圓的方程:說明:本題是先根據(jù)橢圓的定義,判定軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程,求軌跡的方程這是求軌跡方程的一種重要思想方法例7 已知橢圓,(1)求過點(diǎn)且被平分的弦所在直線的方程;(2)求
4、斜率為2的平行弦的中點(diǎn)軌跡方程;(3)過引橢圓的割線,求截得的弦的中點(diǎn)的軌跡方程;(4)橢圓上有兩點(diǎn)、,為原點(diǎn),且有直線、斜率滿足,求線段中點(diǎn)的軌跡方程 分析:此題中四問都跟弦中點(diǎn)有關(guān),因此可考慮設(shè)弦端坐標(biāo)的方法解:設(shè)弦兩端點(diǎn)分別為,線段的中點(diǎn),則得由題意知,則上式兩端同除以,有,將代入得(1)將,代入,得,故所求直線方程為: 將代入橢圓方程得,符合題意,為所求(2)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(3)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(4)由得 : , , 將平方并整理得, , , 將代入得: , 再將代入式得: , 即 此即為所求軌跡方程當(dāng)然,此題除了設(shè)弦端坐標(biāo)的方法,還可
5、用其它方法解決例8 已知橢圓及直線(1)當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?(2)若直線被橢圓截得的弦長(zhǎng)為,求直線的方程解:(1)把直線方程代入橢圓方程得 ,即,解得(2)設(shè)直線與橢圓的兩個(gè)交點(diǎn)的橫坐標(biāo)為,由(1)得,根據(jù)弦長(zhǎng)公式得 :解得方程為說明:處理有關(guān)直線與橢圓的位置關(guān)系問題及有關(guān)弦長(zhǎng)問題,采用的方法與處理直線和圓的有所區(qū)別這里解決直線與橢圓的交點(diǎn)問題,一般考慮判別式;解決弦長(zhǎng)問題,一般應(yīng)用弦長(zhǎng)公式用弦長(zhǎng)公式,若能合理運(yùn)用韋達(dá)定理(即根與系數(shù)的關(guān)系),可大大簡(jiǎn)化運(yùn)算過程例9 以橢圓的焦點(diǎn)為焦點(diǎn),過直線上一點(diǎn)作橢圓,要使所作橢圓的長(zhǎng)軸最短,點(diǎn)應(yīng)在何處?并求出此時(shí)的橢圓方程分析:橢圓的焦點(diǎn)容易
6、求出,按照橢圓的定義,本題實(shí)際上就是要在已知直線上找一點(diǎn),使該點(diǎn)到直線同側(cè)的兩已知點(diǎn)(即兩焦點(diǎn))的距離之和最小,只須利用對(duì)稱就可解決解:如圖所示,橢圓的焦點(diǎn)為,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為(9,6),直線的方程為解方程組得交點(diǎn)的坐標(biāo)為(5,4)此時(shí)最小所求橢圓的長(zhǎng)軸:,又,因此,所求橢圓的方程為例10 已知方程表示橢圓,求的取值范圍解:由得,且滿足條件的的取值范圍是,且說明:本題易出現(xiàn)如下錯(cuò)解:由得,故的取值范圍是出錯(cuò)的原因是沒有注意橢圓的標(biāo)準(zhǔn)方程中這個(gè)條件,當(dāng)時(shí),并不表示橢圓例11 已知表示焦點(diǎn)在軸上的橢圓,求的取值范圍分析:依據(jù)已知條件確定的三角函數(shù)的大小關(guān)系再根據(jù)三角函數(shù)的單調(diào)性,求出的取
7、值范圍解:方程可化為因?yàn)榻裹c(diǎn)在軸上,所以因此且從而說明:(1)由橢圓的標(biāo)準(zhǔn)方程知,這是容易忽視的地方(2)由焦點(diǎn)在軸上,知, (3)求的取值范圍時(shí),應(yīng)注意題目中的條件例12求中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且經(jīng)過和兩點(diǎn)的橢圓方程分析:由題設(shè)條件焦點(diǎn)在哪個(gè)軸上不明確,橢圓標(biāo)準(zhǔn)方程有兩種情形,為了計(jì)算簡(jiǎn)便起見,可設(shè)其方程為(,),且不必去考慮焦點(diǎn)在哪個(gè)坐標(biāo)軸上,直接可求出方程解:設(shè)所求橢圓方程為(,)由和兩點(diǎn)在橢圓上可得即所以,故所求的橢圓方程為例13 知圓,從這個(gè)圓上任意一點(diǎn)向軸作垂線段,求線段中點(diǎn)的軌跡分析:本題是已知一些軌跡,求動(dòng)點(diǎn)軌跡問題這種題目一般利用中間變量(相關(guān)點(diǎn))求軌跡方程或軌跡解:設(shè)
8、點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則,因?yàn)樵趫A上,所以將,代入方程得所以點(diǎn)的軌跡是一個(gè)橢圓說明:此題是利用相關(guān)點(diǎn)法求軌跡方程的方法,這種方法具體做法如下:首先設(shè)動(dòng)點(diǎn)的坐標(biāo)為,設(shè)已知軌跡上的點(diǎn)的坐標(biāo)為,然后根據(jù)題目要求,使,與,建立等式關(guān)系,從而由這些等式關(guān)系求出和代入已知的軌跡方程,就可以求出關(guān)于,的方程,化簡(jiǎn)后即我們所求的方程這種方法是求軌跡方程的最基本的方法,必須掌握例14 已知長(zhǎng)軸為12,短軸長(zhǎng)為6,焦點(diǎn)在軸上的橢圓,過它對(duì)的左焦點(diǎn)作傾斜解為的直線交橢圓于,兩點(diǎn),求弦的長(zhǎng)分析:可以利用弦長(zhǎng)公式求得,也可以利用橢圓定義及余弦定理,還可以利用焦點(diǎn)半徑來求解:(法1)利用直線與橢圓相交的弦長(zhǎng)公式求解因?yàn)?/p>
9、,所以因?yàn)榻裹c(diǎn)在軸上,所以橢圓方程為,左焦點(diǎn),從而直線方程為由直線方程與橢圓方程聯(lián)立得:設(shè),為方程兩根,所以, 從而(法2)利用橢圓的定義及余弦定理求解由題意可知橢圓方程為,設(shè),則,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半徑求解先根據(jù)直線與橢圓聯(lián)立的方程求出方程的兩根,它們分別是,的橫坐標(biāo)再根據(jù)焦半徑,從而求出例15橢圓上的點(diǎn)到焦點(diǎn)的距離為2,為的中點(diǎn),則(為坐標(biāo)原點(diǎn))的值為A4B2 C8 D解:如圖所示,設(shè)橢圓的另一個(gè)焦點(diǎn)為,由橢圓第一定義得,所以,又因?yàn)闉榈闹形痪€,所以,故答案為A說明:(1)橢圓定義:平面內(nèi)與兩定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓(2)橢圓上
10、的點(diǎn)必定適合橢圓的這一定義,即,利用這個(gè)等式可以解決橢圓上的點(diǎn)與焦點(diǎn)的有關(guān)距離例16 已知橢圓,試確定的取值范圍,使得對(duì)于直線,橢圓上有不同的兩點(diǎn)關(guān)于該直線對(duì)稱分析:若設(shè)橢圓上,兩點(diǎn)關(guān)于直線對(duì)稱,則已知條件等價(jià)于:(1)直線;(2)弦的中點(diǎn)在上利用上述條件建立的不等式即可求得的取值范圍解:(法1)設(shè)橢圓上,兩點(diǎn)關(guān)于直線對(duì)稱,直線與交于點(diǎn)的斜率,設(shè)直線的方程為由方程組消去得。于是,即點(diǎn)的坐標(biāo)為點(diǎn)在直線上,解得將式代入式得,是橢圓上的兩點(diǎn),解得(法2)同解法1得出,即點(diǎn)坐標(biāo)為,為橢圓上的兩點(diǎn),點(diǎn)在橢圓的內(nèi)部,解得(法3)設(shè),是橢圓上關(guān)于對(duì)稱的兩點(diǎn),直線與的交點(diǎn)的坐標(biāo)為,在橢圓上,兩式相減得,即又直
11、線,即。又點(diǎn)在直線上,。由,得點(diǎn)的坐標(biāo)為以下同解法2.說明:涉及橢圓上兩點(diǎn),關(guān)于直線恒對(duì)稱,求有關(guān)參數(shù)的取值范圍問題,可以采用列參數(shù)滿足的不等式:(1)利用直線與橢圓恒有兩個(gè)交點(diǎn),通過直線方程與橢圓方程組成的方程組,消元后得到的一元二次方程的判別式,建立參數(shù)方程(2)利用弦的中點(diǎn)在橢圓內(nèi)部,滿足,將,利用參數(shù)表示,建立參數(shù)不等式例17 在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求出以、為焦點(diǎn)且過點(diǎn)的橢圓方程解:以的中點(diǎn)為原點(diǎn),所在直線為軸建立直角坐標(biāo)系,設(shè)則即得所求橢圓方程為例18 已知是直線被橢圓所截得的線段的中點(diǎn),求直線的方程分析:本題考查直線與橢圓的位置關(guān)系問題通常將直線方程與橢圓方程聯(lián)立消去(或),得到關(guān)于(或)的一元二次方程,再由根與系數(shù)的關(guān)系,直接求出,(或,)的值代入計(jì)算即得并不需要求出直線與橢圓的交點(diǎn)坐標(biāo),這種“設(shè)而不求”的方法,在解析幾何中是經(jīng)常采用的解:方法一:設(shè)所求直線方程為代入橢圓方程,整理得 設(shè)直線與橢圓的交點(diǎn)為,則、是的兩根,為中點(diǎn),所求直線方程為方法二:設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)串串香行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)智能公交行業(yè)開拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)螢石行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)XRF儀器行業(yè)全國(guó)市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 化學(xué)品 快速雄激素干擾活性報(bào)告試驗(yàn) 征求意見稿
- 安徽省房屋建筑安徽省工程建筑信息模型(BIM)審查數(shù)據(jù)標(biāo)準(zhǔn)(2025版)
- 2025年鋁制桌椅項(xiàng)目可行性研究報(bào)告
- 燒烤排煙知識(shí)培訓(xùn)課件
- 實(shí)驗(yàn)學(xué)校上學(xué)期工作參考計(jì)劃
- 防詐騙安全知識(shí)培訓(xùn)課件
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2025年中央歌劇院畢業(yè)生公開招聘11人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京市高校課件 開天辟地的大事變 中國(guó)近代史綱要 教學(xué)課件
- 監(jiān)事會(huì)年度工作計(jì)劃
- 2024中國(guó)近海生態(tài)分區(qū)
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期1月期末考試化學(xué)試題(解析版)
- 北師大版五年級(jí)數(shù)學(xué)下冊(cè)第3單元第1課時(shí)分?jǐn)?shù)乘法(一)課件
- 2024-2030年中國(guó)汽車保險(xiǎn)杠行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及前景趨勢(shì)分析報(bào)告
- 智研咨詢發(fā)布:中國(guó)種豬行業(yè)市場(chǎng)現(xiàn)狀、發(fā)展概況、未來前景分析報(bào)告
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí)
- 華中數(shù)控車床編程及操作
評(píng)論
0/150
提交評(píng)論