



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第8課時(shí)二、平面向量數(shù)量積的運(yùn)算律教學(xué)目的:1.掌握平面向量數(shù)量積運(yùn)算規(guī)律;2.能利用數(shù)量積的5個(gè)重要性質(zhì)及數(shù)量積運(yùn)算規(guī)律解決有關(guān)問題;3.掌握兩個(gè)向量共線、垂直的幾何判斷,會(huì)證明兩向量垂直,以及能解決一些簡單問題. 教學(xué)重點(diǎn):平面向量數(shù)量積及運(yùn)算規(guī)律.教學(xué)難點(diǎn):平面向量數(shù)量積的應(yīng)用授課類型:新授課教 具:多媒體、實(shí)物投影儀內(nèi)容分析: 啟發(fā)學(xué)生在理解數(shù)量積的運(yùn)算特點(diǎn)的基礎(chǔ)上,逐步把握數(shù)量積的運(yùn)算律,引導(dǎo)學(xué)生注意數(shù)量積性質(zhì)的相關(guān)問題的特點(diǎn),以熟練地應(yīng)用數(shù)量積的性質(zhì).教學(xué)過程:一、復(fù)習(xí)引入:1兩個(gè)非零向量夾角的概念已知非零向量與,作,則()叫與的夾角.2平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向
2、量與,它們的夾角是,則數(shù)量|a|b|cosq叫與的數(shù)量積,記作ab,即有ab = |a|b|cosq,().并規(guī)定0與任何向量的數(shù)量積為0. 3“投影”的概念:作圖C 定義:|b|cosq叫做向量b在a方向上的投影.投影也是一個(gè)數(shù)量,不是向量;當(dāng)q為銳角時(shí)投影為正值;當(dāng)q為鈍角時(shí)投影為負(fù)值;當(dāng)q為直角時(shí)投影為0;當(dāng)q = 0時(shí)投影為 |b|;當(dāng)q = 180時(shí)投影為 -|b|.4向量的數(shù)量積的幾何意義:數(shù)量積ab等于a的長度與b在a方向上投影|b|cosq的乘積.5兩個(gè)向量的數(shù)量積的性質(zhì):設(shè)a、b為兩個(gè)非零向量,e是與b同向的單位向量.1 ea = ae =|a|cosq; 2 ab ab =
3、 03 當(dāng)a與b同向時(shí),ab = |a|b|;當(dāng)a與b反向時(shí),ab = -|a|b|. 特別的aa = |a|2或4cosq = ;5|ab| |a|b|二、講解新課:平面向量數(shù)量積的運(yùn)算律1交換律:a b = b a證:設(shè)a,b夾角為q,則a b = |a|b|cosq,b a = |b|a|cosq a b = b a2數(shù)乘結(jié)合律:(a)b =(ab) = a(b)證:若 0,(a)b =|a|b|cosq, (ab) =|a|b|cosq,a(b) =|a|b|cosq,若 0,(a)b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(ab) =|a
4、|b|cosq,a(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq.3分配律:(a + b)c = ac + bc 在平面內(nèi)取一點(diǎn)O,作= a, = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2, c(a + b) = ca + cb 即:(a + b)c = ac + bc說明:(1)一般地,()()(2),0(3)有如下常用性質(zhì):,()()(
5、)三、講解范例:例1 已知a、b都是非零向量,且a + 3b與7a - 5b垂直,a - 4b與7a - 2b垂直,求a與b的夾角.解:由(a + 3b)(7a - 5b) = 0 7a2 + 16ab -15b2 = 0 (a - 4b)(7a - 2b) = 0 7a2 - 30ab + 8b2 = 0 兩式相減:2ab = b2代入或得:a2 = b2設(shè)a、b的夾角為q,則cosq = q = 60例2 求證:平行四邊形兩條對角線平方和等于四條邊的平方和.解:如圖:平行四邊形ABCD中,=|2=而= ,|2=|2 + |2 = 2= 例3 四邊形ABCD中,且,試問四邊形ABCD是什么圖
6、形?分析:四邊形的形狀由邊角關(guān)系確定,關(guān)鍵是由題設(shè)條件演變、推算該四邊形的邊角量.解:四邊形ABCD是矩形,這是因?yàn)椋阂环矫妫?,(),()()即由于,同理有由可得,且即四邊形ABCD兩組對邊分別相等.四邊形ABCD是平行四邊形另一方面,由,有(),而由平行四邊形ABCD可得,代入上式得(2),即,也即ABBC.綜上所述,四邊形ABCD是矩形.評述:(1)在四邊形中,是順次首尾相接向量,則其和向量是零向量,即0,應(yīng)注意這一隱含條件應(yīng)用;(2)由已知條件產(chǎn)生數(shù)量積的關(guān)鍵是構(gòu)造數(shù)量積,因?yàn)閿?shù)量積的定義式中含有邊、角兩種關(guān)系.四、課堂練習(xí):1.下列敘述不正確的是( )A.向量的數(shù)量積滿足交換律 B.向量的數(shù)量積滿足分配律C.向量的數(shù)量積滿足結(jié)合律 D.ab是一個(gè)實(shí)數(shù)2.已知|a|=6,|b|=4,a與b的夾角為,則(a+2b)(a-3b)等于( )A.72 B.-72 C.36 D.-363.|a|=3,|b|=4,向量a+b與a-b的位置關(guān)系為( )A.平行 B.垂直 C.夾角為 D.不平行也不垂直4.已知|a|=3,|b|=4,且a與b的夾角為150,則(a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 假離婚賠償合同書
- 借款合同書與借款合同協(xié)議書
- 丁青縣電梯安全管理人員筆試試題題目以及答案
- 墻紙軟包供銷合同
- 會(huì)計(jì)資料的安全保護(hù)措施計(jì)劃
- 勞動(dòng)局勞動(dòng)合同書
- 幼兒園教師職業(yè)幸福感培訓(xùn)
- 新生兒護(hù)理文書規(guī)范化管理
- 第7課《回憶我的母親》教學(xué)設(shè)計(jì)2024-2025學(xué)年統(tǒng)編版語文八年級上冊
- 2024春七年級數(shù)學(xué)下冊 第5章 分式5.2分式的基本性質(zhì)(1)教學(xué)設(shè)計(jì)(新版)浙教版
- 統(tǒng)編版高中語文必修下冊理解性默寫練習(xí)題匯編(含答案)
- 林木種質(zhì)資源調(diào)查表(新表)
- 超星爾雅學(xué)習(xí)通《形勢與政策(2024春)》章節(jié)測試答案
- 特種兵作戰(zhàn)分析報(bào)告
- 8.1.2樣本相關(guān)系數(shù)(教學(xué)設(shè)計(jì))高二數(shù)學(xué)(人教A版2019選擇性)
- 神經(jīng)性疼痛的病因和治療
- DB11T 381-2023既有居住建筑節(jié)能改造技術(shù)規(guī)程
- 人事檔案管理標(biāo)準(zhǔn)
- GB/T 31402-2023塑料和其他無孔材料表面抗菌活性的測定
- 體驗(yàn)式服務(wù)設(shè)計(jì)
- 社群健康助理員考試復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論