楊蘋勾股定理課后說(shuō)課稿_第1頁(yè)
楊蘋勾股定理課后說(shuō)課稿_第2頁(yè)
楊蘋勾股定理課后說(shuō)課稿_第3頁(yè)
楊蘋勾股定理課后說(shuō)課稿_第4頁(yè)
楊蘋勾股定理課后說(shuō)課稿_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、勾股定理課后說(shuō)課稿寧安市沙蘭中學(xué) 楊蘋尊敬的各位領(lǐng)導(dǎo)、評(píng)委、同仁:大家好!我是寧安市沙蘭中學(xué)楊蘋,很高興有機(jī)會(huì)與在座的各位同仁研討課后說(shuō)課.今天我說(shuō)課的題目是勾股定理。本課選自人教版八年級(jí)下冊(cè)初中數(shù)學(xué)第十八章第一節(jié)的第一課時(shí)。下面我從教學(xué)背景分析、教法選擇、學(xué)法指導(dǎo)、教學(xué)流程等方面對(duì)本課的設(shè)計(jì)進(jìn)行說(shuō)明一、教學(xué)背景分析1.教材分析本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,是初等幾何中的一個(gè)基本定理,它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為以后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。在探求勾股定理的

2、過(guò)程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把直角三角形“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測(cè)一般直角三角形的三邊關(guān)系,這是特殊一般的數(shù)學(xué)思想。因此本節(jié)課有著舉足輕重的地位。2.學(xué)情分析通過(guò)前面的學(xué)習(xí),學(xué)生已經(jīng)具備一些平面幾何的知識(shí),能進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對(duì)這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此我采用直觀教具,多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦、化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂(lè)趣。3.教學(xué)目

3、標(biāo)根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)的要求我制訂了如下教學(xué)目標(biāo):經(jīng)歷勾股定理的探索過(guò)程,感受數(shù)形結(jié)合的思想,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)。嘗試用多種方法驗(yàn)證勾股定理,體驗(yàn)解決問(wèn)題策略的多樣性。培養(yǎng)在實(shí)際生活發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力。感受數(shù)學(xué)文化,激發(fā)學(xué)生的學(xué)習(xí)熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,增強(qiáng)民族自豪感,感受數(shù)學(xué)對(duì)社會(huì)發(fā)展的推動(dòng)作用。4.教學(xué)重難點(diǎn)通過(guò)分析可見(jiàn),勾股定理是平面幾何的重要定理,在今后的生活實(shí)踐中有著廣泛運(yùn)用。因此我確定本課的教學(xué)重點(diǎn)為探索和證明勾股定理、用面積相等對(duì)勾股定理進(jìn)行證明對(duì)學(xué)生來(lái)說(shuō)有一定的難度,為此我確定本課的教學(xué)難點(diǎn)為用拼圖的方法來(lái)證明勾股定理。二、教法、學(xué)法1.教法

4、數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)八年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神。“2.學(xué)法新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并一同參與到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,從不同層次發(fā)掘?qū)W生的創(chuàng)新精神。使學(xué)生真正成為學(xué)習(xí)的主人。三、教學(xué)流程(一)創(chuàng)設(shè)情境,引入新知我利

5、用多媒體課件,給學(xué)生出示一幅生活場(chǎng)景,激發(fā)學(xué)生解決問(wèn)題的欲望。結(jié)合2002年國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)面通過(guò)觀察會(huì)徽?qǐng)D案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?據(jù)說(shuō)古希臘數(shù)學(xué)家畢達(dá)哥拉斯在完成這一定理證明后欣喜若狂,而殺牛百只以示慶賀。因此這一定理還又獲得了一個(gè)帶神秘色彩的稱號(hào):“百牛定理”。激發(fā)學(xué)生的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題(二)實(shí)驗(yàn)操作,探究新知(在設(shè)計(jì)時(shí)分三個(gè)層次進(jìn)行探索,由簡(jiǎn)單直觀的數(shù)格子到計(jì)算三個(gè)正方形的面積,到拼圖進(jìn)行驗(yàn)證,層層遞進(jìn))初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的

6、數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問(wèn)題,現(xiàn)在請(qǐng)你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問(wèn)題更形象、具體。提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看、填一填、想一想、議一議、做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生再由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。這一環(huán)節(jié)我利用多媒體課件,給學(xué)生演示,生動(dòng)直觀,不僅要使學(xué)生“知其然,還要使學(xué)生知其所以然”。 ( 大正方形面積的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過(guò)小組交流,最后由小組代表到臺(tái)前展示學(xué)生可能提出割、補(bǔ)、平移、旋轉(zhuǎn)等方法

7、。) 利用方格紙,我們方便計(jì)算直角邊為整數(shù)的情況,若直角邊為小數(shù)時(shí),所得到的正方形面積之間也有如上關(guān)系嗎?將網(wǎng)格線去掉,利用幾何畫板的度量工具可以看到SP+SQ=SR(利用幾何畫板的高效性、動(dòng)態(tài)性反映這一過(guò)程,讓學(xué)生體會(huì)到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻)驗(yàn)證猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明:通過(guò)活動(dòng)3我充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流、探究驗(yàn)證勾股定理的多種方法。及時(shí)肯定學(xué)生的研究成果,使學(xué)生在學(xué)習(xí)過(guò)程中,感受到自我創(chuàng)造的快樂(lè),從而分散

8、了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。(在探索的過(guò)程中學(xué)生經(jīng)歷了由直觀到抽象,由特殊到一般的變化過(guò)程,也經(jīng)歷觀察計(jì)算猜想驗(yàn)證歸納的數(shù)學(xué)發(fā)現(xiàn)過(guò)程,發(fā)展合情推理的能力,體會(huì)數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想。)總結(jié)定理:讓學(xué)生自己總結(jié),不完善之處由教師補(bǔ)充,結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá)培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。勾股定理簡(jiǎn)介:借助多媒體課件,通過(guò)介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生的學(xué)習(xí)熱情,體會(huì)古人偉大的智慧,增強(qiáng)民族自豪感。6勾股定理的感悟:生活中處處有知識(shí),只要我們善思考,探究事物之間的關(guān)系,刻苦努力、勤于探索,每一位同

9、學(xué)都將插上科學(xué)的翅膀,翱翔在知識(shí)的海洋中(三)解決問(wèn)題,應(yīng)用新知學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),我設(shè)計(jì)了一組練習(xí)題,首先解決導(dǎo)題,形成首尾呼應(yīng),讓學(xué)生體會(huì)勝利的喜悅,其次我又分別設(shè)計(jì)了基礎(chǔ)知識(shí)、靈活應(yīng)用、回歸生活等幾個(gè)問(wèn)題,設(shè)置不同層次的練習(xí)以滿足不同層次的學(xué)生的需求,讓不同的學(xué)生都有不同的收獲。通過(guò)口答、矯正、討論等過(guò)程,調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性、積極性和參與度,通過(guò)合作交流提高課堂教學(xué)的有效性。讓學(xué)生感受到勾股定理的廣泛應(yīng)用以及生活中處處有數(shù)學(xué)。由于設(shè)計(jì)符合學(xué)生的實(shí)際生活,學(xué)生解決問(wèn)題的欲望非常高。(四)歸納總結(jié),深化新知本節(jié)課你

10、有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的問(wèn)題是什么?應(yīng)用勾股定理時(shí)應(yīng)該注意什么?通過(guò)小結(jié),讓學(xué)生暢所欲言,從數(shù)學(xué)知識(shí)、數(shù)學(xué)思想、數(shù)學(xué)方法;情感態(tài)度價(jià)值觀等方面進(jìn)行總結(jié)。使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。(五)布置作業(yè),拓展新知讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。(六)板書(shū)設(shè)計(jì),明確新知完美收官,結(jié)束本節(jié)課的教學(xué)。四、教學(xué)反思數(shù)學(xué)教學(xué)應(yīng)該是“數(shù)學(xué)活動(dòng)的過(guò)程”,應(yīng)該是學(xué)生經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的過(guò)程,是教師幫助學(xué)生建構(gòu)和發(fā)展認(rèn)知結(jié)構(gòu)的過(guò)程,是師生的互動(dòng)共同發(fā)展的過(guò)程。數(shù)學(xué)活動(dòng)不單單是外部的操作活動(dòng),主要是內(nèi)部的思維活動(dòng)。據(jù)此,本課設(shè)計(jì)力求讓學(xué)生參與知識(shí)的發(fā)現(xiàn)過(guò)程,體現(xiàn)以學(xué)生為主體,以促進(jìn)學(xué)生發(fā)展為本的教學(xué)理念,變知識(shí)的傳授者為學(xué)生自主探求知識(shí)的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀教具演示,營(yíng)造一個(gè)聲像同步,能動(dòng)能靜的教學(xué)情境,給學(xué)生提供一個(gè)探索的空間,促使學(xué)生主動(dòng)參與,親身體驗(yàn)勾股定理的探索證明過(guò)程,從而鍛煉思維、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論