一元二次方程主體單元教學設計及規(guī)劃思維導圖_第1頁
一元二次方程主體單元教學設計及規(guī)劃思維導圖_第2頁
一元二次方程主體單元教學設計及規(guī)劃思維導圖_第3頁
一元二次方程主體單元教學設計及規(guī)劃思維導圖_第4頁
一元二次方程主體單元教學設計及規(guī)劃思維導圖_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、一元二次方程主題單元教學設計主題單元標題一元二次方程適用年級九年級所需時間15課時1、主題單元在課程中的地位:一元二次方程是中學數(shù)學的主要內容之一,在初中數(shù)學中占有重要地位。通過一元二次方程的學習,可以對已學過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學習可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎。此外,學習一元二次方程對其它學科有重要意義。在總體設計思路上,本章遵循了“問題情境-建立模型-拓展、應用”的模式,首先通過具體問題情境建立有關方程,并歸納出一元二次方程的有關概念,然后探索其各種解法,并在現(xiàn)實情境中加以應用,切實提高學生的應用意識和

2、能力。 2單元的組成: (1)一元二次方程的有關概念 (2)用直接開平方法、配方法、公式法、因式分解法解一元二次方程 (3)根據(jù)根的判別式判斷一元二次方程的根的情況 (4)一元二次方程根與系數(shù)的關系,并運用它解決有問題 (5)運用一元二次方程解決簡單的實際問題 3、重難點:(1)重點:運用知識、技能解決問題(2)難點:解題分析能力的提高 4、專題的劃分和專題之間的關系:(1)一元二次方程的有關概念(2)用直接開平方法、配方法、因式分解法解一元二次方程(3)用公式法解一元二次方程,根據(jù)根的判別式判斷一元二次方程的根的

3、情況一元二次方程根與系數(shù)的關系,并運用它解決有問題(4)運用一元二次方程解決簡單的實際問題主題單元學習目標(說明:依據(jù)新課程標準要求描述學生在本主題單元學習中所要達到的主要目標)知識與技能:1、能夠利用一元二次方程解決有關實際問題,能根據(jù)具體問題的實際意義檢驗結果的合理性,進一步培養(yǎng)學生分析問題、解決問題的意識和能力。2、了解一元二次方程及其相關概念,會用配方法、公式法、分解因式法解簡單地一元二次方程,并在解一元二次方程的過程中體會轉換等數(shù)學思想。3、經歷在具體情境中估計一元二次方程解的過程,發(fā)展估算意識和能力。4、會不解方程通過根的判別式判斷一元二次方程的情況,了解根與系數(shù)的關系,并會用計算

4、器解一元二次方程。過程與方法:經歷由具體問題抽象出一元二次方程的過程,進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型。情感態(tài)度與價值觀:能利用一元二次方程的知識解決實際問題,在解決問題的過程中體會數(shù)學的應用價值。 對應課標(說明:學科課程標準對本單元學習的要求)(1)了解一元二次方程的有關概念(2)能靈活運用直接開平方法、配方法、公式法、因式分解法解一元二次方程(3)會根據(jù)根的判別式判斷一元二次方程的根的情況(4)知道一元二次方程根與系數(shù)的關系,并會運用它解決有關問題(5)能運用一元二次方程解決簡單的實際問題主題單元問題設計1.什么叫做一元二次方程?一元二次方程的二次項和二

5、次項系數(shù)、一次項和一次項系數(shù)、常數(shù)項是什么?2.解一元二次方程的解法有哪幾個?一元二次方程的判別式是什么?它與根的關系是?3. 一元二次方程根與系數(shù)的關系是什么?4,怎么用一元二次方程解決簡單實際問題?專題劃分專題一:一元二次方程的概念               (2課時)專題二:一元二次方程的解法             &

6、#160;(7課時)專題三:一元二次方程根與系數(shù)的關系        (2課時)專題四:一元二次方程的應用               (4課時)專題一一元二次方程的概念所需課時2課時專題學習目標 (說明:描述學生在本專題學習中所要達到的學習目標,注意與主題單元的學習目標呼應)1、知道一元二次方程的定義,能熟練地把一元二次方程整理成一般形式ax2bxc0(a0)2、在分析、揭示

7、實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型(一元二次方程)的過程中進一步感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,增加對一元二次方程的感性認識。專題問題設計1問題一綠苑小區(qū)住宅設計,準備在每兩幢樓房之間,開辟面積為900平方米的一塊長方形綠地,并且長比寬多10米,那么綠地的長和寬各為多少?分析:設長方形綠地的寬為x米,則列方程                     ,整理可得  

8、;                    。2問題二學校圖書館去年年底有圖書5萬冊,預計到明年年底增加到7.2萬冊.求這兩年的年平均增長率.解:設這兩年的年平均增長率為x,我們知道,去年年底的圖書數(shù)是5萬冊,則今年年底的圖書數(shù)是        萬冊;明年年底的圖書數(shù)是      

9、      ,      可列得方程              ,整理可得                   。3思考、討論上面的兩個方程這兩個方程是一元一次方程嗎?它們與一元一次方程的區(qū)

10、別在哪里?它們有什么共同特點呢?(學生分組討論,然后各組交流)共同特點:(1)           (2)               (3)            所需教學環(huán)境和教學資源(說明:在此列出本專題所需要的教學環(huán)境和學習過程中所需的信息化

11、資源、常規(guī)資源等和各種支持資源)紙、筆、小黑板、課件學習活動設計(說明:為達到本專題的學習目標,從學生的角度設計學生應參與的學習活動。如本專題由幾個課時組成,則應分課時描述每個課時的學習活動設計。請以活動1、活動2、活動3等的形式,提綱挈領地描述每個課時包含哪些學習活動以及每個活動的主要步驟。注意,在這些學習活動中應通過對所設計的本專題的問題的探究完成學習任務)一、學:1問題一綠苑小區(qū)住宅設計,準備在每兩幢樓房之間,開辟面積為900平方米的一塊長方形綠地,并且長比寬多10米,那么綠地的長和寬各為多少?分析:設長方形綠地的寬為x米,則列方程    

12、0;                ,整理可得                      。       2問題二學校圖書館去年年底有圖書5萬冊,預計到明年年底增加到7.2萬冊.求

13、這兩年的年平均增長率.解:設這兩年的年平均增長率為x,我們知道,去年年底的圖書數(shù)是5萬冊,則今年年底的圖書數(shù)是        萬冊;明年年底的圖書數(shù)是            ,      可列得方程              ,整理可得 &

14、#160;                 。        3思考、討論上面的兩個方程這兩個方程是一元一次方程嗎?它們與一元一次方程的區(qū)別在哪里?它們有什么共同特點呢?(學生分組討論,然后各組交流)共同特點:(1)           (2) &#

15、160;             (3)            二、教:上述兩個整式方程中都只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的方程叫做一元二次方程。通??蓪懗扇缦碌囊话阈问剑篴x2bxc0(a、b、c是已知數(shù),a0)。其中 ax2叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù),c叫做常數(shù)項。評價要點能否用嚴格的語言總結一元二次方程的概念

16、專題二 一元二次方程的解法所需課時7課時專題學習目標  (說明:描述學生在本專題學習中所要達到的學習目標,注意與主題單元的學習目標呼應)會用合適的方法解一元二次方程專題問題設計1、 解一元二次方程的基本思路是將方程轉化成左邊是            式,右邊是一個        的形式,即         &

17、#160;   ;注意:當n    0時,兩邊          便可求出它的根.2.給做一做填空(用鉛筆)并回答:等式左邊的常數(shù)項和一次項系數(shù)有什么關系?           3.例2:解題思路             

18、0;                                  . 所需教學環(huán)境和教學資源: 紙、筆、小黑板、課件、網絡資源學習活動設計(說明:為達到本專題的學習目標,從學生的角度設計學生應參與的學習活動。如本專題由幾個課時組成,則應分課時描

19、述每個課時的學習活動設計。請以活動1、活動2、活動3等的形式,提綱挈領地描述每個課時包含哪些學習活動以及每個活動的主要步驟。注意,在這些學習活動中應通過對所設計的本專題的問題的探究完成學習任務)一、學: 解一元二次方程的基本思路是將方程轉化成左邊是            式,右邊是一個        的形式,即          

20、;   注意:當n    0時,兩邊          便可求出它的根.2.給做一做填空(用鉛筆)并回答:等式左邊的常數(shù)項和一次項系數(shù)有什么關系?           3.例2:解題思路             

21、0;                                  .二、教  交流上面的問題,教師點撥三、 練  1、 如果  x2+mx+4是一個完全平方式,求m的值。  2、解方程  -x2+4x+5

22、=0 3    x2+12x+27=0,                             .4   4x2+8x+7=0,   5  2 x2-4 x-5=0     &#

23、160;                          6   x(x+6)=7 評價要點能否會用恰當?shù)姆椒ń庖辉畏匠虒n}三一元二次方程根與系數(shù)的關系所需課時2課時專題學習目標  (說明:描述學生在本專題學習中所要達到的學習目標,注意與主題單元的學習目標呼應) 1、會用根的判別式判斷一元二次

24、方程根的情況2、能推倒出韋達定理。專題問題設計你能利用求根公式計算出兩根之和和兩根之積嗎 ?所需教學環(huán)境和教學資源: 紙、筆、小黑板、課件、網絡資源學習活動設計(說明:為達到本專題的學習目標,從學生的角度設計學生應參與的學習活動。如本專題由幾個課時組成,則應分課時描述每個課時的學習活動設計。請以活動1、活動2、活動3等的形式,提綱挈領地描述每個課時包含哪些學習活動以及每個活動的主要步驟。注意,在這些學習活動中應通過對所設計的本專題的問題的探究完成學習)一、  學1     預習疑難:_2   &

25、#160; 在練習本上解下列方程,并依次計算其兩根和、兩根積。(1)x2+5x+6=0   x1+x2=_ x1·x2=_   (2)x2-3x+1=0   x1+x2=_ x1·x2=_  (3)2x2-x-1=0   x1+x2=_ x1·x2=_(4)4x2-7x=1    x1+x2=_ x1·x2=_ 你發(fā)現(xiàn)規(guī)律了嗎?你能用語言表達嗎?3     對于一元二次方程ax2+bx+c=0(a

26、0),當b2-4ac0時,x1,x2是它的兩個根。你能從理論上對2.中發(fā)現(xiàn)的規(guī)律進行驗證嗎?則x1+x2=_x1·x2=_在特例中應用一下吧。如果x1,x2是方程x2+px+q=0的兩個根,那么x1+x2=_ x1·x2=_4     自學課本P56例4后解答下面的題目。方程3x2+mx-5=0 一個根為5,求它的另一個根及m的值。 二、  教1     與同伴探討交流上面1. 2. 3. 中提出的問題。2     展示板演一下4.中的

27、題目。三、  練(一)          初步應用1     不解方程填寫。(1) x2-3x+1=0 x1+x2=_ x1·x2=_ (2) 2x2-9x+5=0 x1+x2=_ x1·x2=_(3) 4x2-7x=1 x1+x2=_ x1·x2=_  (4) 2x2+3x=0 x1+x2=_ x1·x2=_(5) 2x2-5=0 x1+x2=_ x1·x2=_   (6)

28、9(x+2)2=16 x1+x2=_ x1·x2=_2     判斷方程后面的兩個數(shù)是不是它的根。必做(1)x2-5x+4=0 (1,4)    (2)x2-6x+7=0 (-1,7)   選做(3)2x2-3x+1=0 (,1)     (4)3x2+5x-2=0 (,2) 3     已知方程2 x2+3x-5=0的兩根為x1,x2,則x12+ x22=_。(二)聯(lián)系拓展(1)方程3x2-4x+k=0 一個根為

29、-,求它的另一個根及k 的值。(2)已知關于x的方程5x2+kx+2k=0的一個根是,求它的另一個根及k的值。 評價要點能否用嚴格的語言總結一元二次方程的概念專題四一元二次方程的應用 所需課時4 課時專題學習目標  (說明:描述學生在本專題學習中所要達到的學習目標,注意與主題單元的學習目標呼應)1、使學生會用列一元二次方程的方法解決有關商品的銷售問題2、進一步培養(yǎng)學生化實際問題為數(shù)學問題的能力和分析問題解決問題的能力,培養(yǎng)學生應用數(shù)學的意識。專題問題設計一)情景引入某書店新進暢銷圖書,很快就銷售完。老板想知道這批圖書共賺了多少錢,需要知道哪些量?(二)自

30、主探究問題1:每件商品進價10元,售價15元(1)若每件商品漲價2元,則每件商品進價     元,每件商品利潤    元;(2)若每件商品漲價3元,則每件商品進價     元,每件商品利潤    元;(3)若每件商品漲價x元,則每件商品進價     元,每件商品利潤    元;(4)若每件商品降價x元,則每件商品進價     元,每件商品利潤

31、60;   元;問題2:若平均每天要銷售100件這種商品,將原來的價格進行調整,如果每件商品每降1元,平均每天多銷售2件(1)若每件商品每降2元,則平均每天多賣     件,每天銷售      件;(2)若每件商品每降x元,則平均每天多賣     件,每天銷售      件;如果每件商品每漲3元,平均每天少賣5件,若現(xiàn)在每件商品漲x元,則每天銷售        件。 所需教學環(huán)境和教學資源: 紙、筆、小黑板、課件、網絡資源學習活動設計(說明:為達到本專題的學習目標,從學生的角度設計學生應參與的學習活動。如本專題由幾個課時組成,則應分課時描述每個課時的學習活動設計。請以活動1、活動2、活動3等的形式,提綱挈領地描述每個課時包含哪些學習活動以及每個活動的主要步

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論