2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)與答案及解析_第1頁
2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)與答案及解析_第2頁
2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)與答案及解析_第3頁
2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)與答案及解析_第4頁
2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)與答案及解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)一、單選題(每小題3分,共計30分) 1. -2021的絕對值是( ) A.-2021B.C.2021D. 2. 下面是四個手機APP的圖標,其中既不是軸對稱圖形,也不是中心對稱圖形的是( ) A.B.C.D. 3. 如圖,將一副三角板重疊放在一起,使直角頂點重合于點O若AOC=130,則BOD=(        ) A.30B.40C.50D.60 4. 下列各式計算正確的是( ) A.(a-b)2a2-b2B.a8÷a4a2(a0)

2、C.2a33a26a5D.(-a2)3a6 5. 在關于x的函數(shù)y+(x-1)0中,自變量x的取值范圍是( ) A.x-2B.x-2且x0C.x-2且x1D.x1 6. 已知是關于x,y的二元一次方程組的解,則a+b的值為( ) A.-5B.-1C.3D.7 7. 如圖,等邊OAB的頂點O為坐標原點,AB/x軸,OA2,將等邊OAB繞原點O順時針旋轉105至OCD的位置,則點D的坐標為( ) A.(2,-2)B.(,)C.(,)D.(,-) 8. 如圖,點C、D、E、F、G均在以AB為直徑的O上,其中AGC20,BFE10,則CDE( ) A.115B.

3、120C.135D.150 9. 如圖,ABC中,ACB90,CACB,AD為ABC的角平分線,CE是ABC的中線,AD、CE相交于點F,則的值為( ) A.B.C.D.2 10. 如圖,拋物線yax2+bx+1的頂點在直線ykx+1上,對稱軸為直線x1,有以下四個結論:ab<0,b<,a-k,當0<x<1時,ax+b>k,其中正確的結論是( ) A.B.C.D.二、填空題(11-14每小題3分,15-18每小題4份,共28分)  tan30-_   因式分解:4a3-16a=_   我國北斗公司在2020年發(fā)布了

4、一款代表國內衛(wèi)星導航系統(tǒng)最高水平的芯片,該芯片的制造工藝達到了0.000000022米用科學記數(shù)法表示0.000000022為_米   兩組數(shù)據(jù):3,a,b,5與a,4,2b的平均數(shù)都是3若將這兩組數(shù)據(jù)合并為一組新數(shù)據(jù),則這組新數(shù)據(jù)的眾數(shù)為_   2022年在北京將舉辦第24屆冬季奧運會,很多學校都開展了冰雪項目學習如圖,滑雪軌道由AB、BC兩部分組成,AB、BC的長度都為200米,一位同學乘滑雪板沿此軌道由A點滑到了C點,若AB與水平面的夾角為30,BC與水平面的夾角為45,則他下降的高度為_米(結果保留根號)   如圖,以A為圓心AB為半徑作扇形ABC,線段A

5、C交以AB為直徑的半圓弧的中點D,若AB=4,則陰影部分圖形的面積S是_(結果保留)   如圖,直線AB交雙曲線y于A、B兩點,交x軸于點C,且B恰為線段AC的中點,連接OA若SOAC,則k的值為_   拋物線yax2+bx+c經(jīng)過A(-1,4),B(2,4),則關于x的一元二次方程a(x-3)2-43b-bx-c的解為_ 三、解答題(共62分)  先化簡,再求值:-,其中a與2、3構成ABC的三邊,且a為整數(shù)   如圖,ACB和ECD都是等腰直角三角形,CACB,CECD,ACB的頂點A在ECD的斜邊DE上 (1)求證:ADB90; (2)若AE2,A

6、D4,求AC  關于x的方程有兩個不相等的實數(shù)根 (1)求m的取值范圍 (2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于2?若存在,求出m的值;若不存在,說明理由  隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選擇一種),在全校隨機調查了部分學生,將統(tǒng)計結果繪制成了如下兩幅不完整的統(tǒng)計圖,其中扇形統(tǒng)計圖中,表示“釘釘”和“QQ”的扇形圓心角相等,請結合圖中所給信息解答下列問題: (1)這次統(tǒng)計共抽查了_名學生;在扇形統(tǒng)計圖中,表示“釘釘”的扇形圓心角的度數(shù)為_; (2)將條形統(tǒng)計圖補充完整;

7、(3)該校共有2000名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名? (4)某天甲、乙兩名同學都想從“微信”、“釘釘”、“QQ”、“電話”四種溝通方式中選擇一種方式與對方聯(lián)系,請用列表或樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率  某汽車租賃公司要購買轎車和面包車共10輛,其中轎車至少要購買3輛,轎車每輛12萬元,面包車每輛8萬元,公司可投入的購車款不超過100萬元; (1)符合公司要求的購買方案有幾種?請說明理由; (2)如果每輛轎車的日租金為250元,每輛面包車的日租金為150元,假設新購買的這10輛車每日都可租出,要使這10輛車的日租金不低于2000

8、元,那么應選擇以上哪種購買方案?  如圖,已知AB是O的直徑,C是O上一點(不與A、B重合),D為的AC中點,過點D作弦DEAB于F,P是BA延長線上一點,且PEAB (1)求證:PE是O的切線; (2)連接CA與DE相交于點G,CA的延長線交PE于H,求證:HEHG; (3)若tanP=512,試求AHAG的值  在平面直角坐標系中,拋物線y-x2+bx+c經(jīng)過點A(2,0)和點(-1,2)(I)求拋物線的解析式;(II)P(m,t)為拋物線上的一個動點,點P關于原點的對稱點為P'當點P'落在該拋物線上時,求m的值;(III)P(m,t)(m<2)是

9、拋物線上一動點,連接PA,以PA為邊作圖示一側的正方形APFG,隨著點P的運動,正方形的大小與位置也隨之改變,當頂點F或G恰好落在y軸上時,求對應的P點坐標 參考答案與試題解析2021年湖北省黃石市下陸區(qū)、大冶市部分學校中考數(shù)學模擬試卷(3月份)一、單選題(每小題3分,共計30分)1.【答案】C【考點】絕對值【解析】根據(jù)絕對值的意義即可進行求解【解答】 負數(shù)的絕對值等于它的相反數(shù), -2021的絕對值為20212.【答案】D【考點】軸對稱圖形中心對稱圖形【解析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解【解答】A、不是中心對稱圖形,是軸對稱圖形,故本選項不合題意;B、是中心對稱

10、圖形,不是軸對稱圖形,故本選項不合題意;C、不是中心對稱圖形,是軸對稱圖形,故本選項不合題意;D、既不是中心對稱圖形,也不是軸對稱圖形,故本選項符合題意3.【答案】C【考點】余角和補角角的計算【解析】根據(jù)角的和差關系求解即可【解答】解: AOC=130, BOC=AOC-AOB=130-90=40, BOD=COD-BOC=90-40=50.故選C.4.【答案】C【考點】冪的乘方與積的乘方同底數(shù)冪的除法單項式乘單項式完全平方公式【解析】A、原式利用完全平方公式展開得到結果,即可做出判斷;B、原式利用同底數(shù)冪的除法法則計算得到結果,即可做出判斷;C、原式利用單項式乘單項式法則計算得到結果,即可做

11、出判斷;D、原式利用冪的乘方與積的乘方運算法則計算得到結果,即可做出判斷【解答】A、原式a2+b2-2ab,錯誤;B、原式a4,錯誤;C、原式6a5,正確;D、原式-a6,錯誤5.【答案】C【考點】零指數(shù)冪函數(shù)自變量的取值范圍【解析】根據(jù)二次根式被開方數(shù)是非負數(shù),0的0次冪沒有意義即可求解【解答】根據(jù)題意得:x+20且x-10,解得:x-2且x16.【答案】B【考點】二元一次方程組的解【解析】將x與y的值代入原方程組即可求出答案【解答】將代入方程組,得,+,得3a+3b-3,即3(a+b)-3,所以a+b-17.【答案】D【考點】等邊三角形的性質坐標與圖形變化-旋轉【解析】過D作DEy軸于E,

12、得到DEO90,根據(jù)等邊三角形的性質得到OAOB2,AOB60,得到BOF30,根據(jù)旋轉的性質得到BOD105,ODOB2,求得DOE45,于是得到結論【解答】過D作DEy軸于E, DEO90, OAB是等邊三角形, OAOB2,AOB60, AB/x軸, ABy軸于F, BOF30, 將等邊OAB繞原點O順時針旋轉105至OCD的位置, BOD105,ODOB2, DOE45, OEDEOD, 點D的坐標為(,-),8.【答案】B【考點】圓周角定理【解析】連接GB、GE,如圖,根據(jù)圓周角定理得到AGB90,BGEBFE10,則CGE60,然后根據(jù)圓內接四邊形的性質求D的度數(shù)【解答】連接GB、

13、GE,如圖, AB為直徑, AGB90, AGC20,BGEBFE10, CGEAGB-AGC-BGE90-20-1060, 四邊形DCGE為O的內解四邊形, D+CGE180, D180-601209.【答案】A【考點】直角三角形斜邊上的中線等腰直角三角形【解析】先過點F作FGAC,垂足為G,由CE是ABC的中線,根據(jù)等腰三角形的性質可得出,CEAB,CEAE,根據(jù)勾股定理可得出AEABAC,根據(jù)角平分線的性質可得出FEFG,即,可證EFAGFA,可得AGAE,易證 DACFAG,即,等量代換即可得出答案【解答】過點F作FGAC,垂足為G,如圖1, ACB90,CACB, AB,又 CE是A

14、B邊上的中線, AEAB且CEAE, ECAEAC45, ECA90,即CEAB, FEFG, ,在EFA和GFA中, EFAGFA(ASA), AEAG,在DAC和FAG中, DACFAG, , 10.【答案】B【考點】一次函數(shù)圖象上點的坐標特點二次函數(shù)圖象上點的坐標特征二次函數(shù)圖象與系數(shù)的關系一次函數(shù)的性質【解析】根據(jù)二次函數(shù)的圖象與系數(shù)的關系即可求出答案【解答】 拋物線開口向下, a<0, 拋物線的對稱軸為直線x-1, b-2a>0, ab<0,所以正確,符合題意; x-1時,y<0,即a-b+1<0, b-2a, a-, -b+1<0, b>,

15、所以錯誤,不符合題意;當x1時,ya+b+1a-2a+1-a+1, 拋物線的頂點坐標為(1,-a+1),把(1,-a+1)代入ykx+1得-a+1k+1, a-k,所以正確,符合題意;當0<x<1時,ax2+bx+1>kx+1,即ax2+bx>kx, ax+b>k,所以正確,符合題意二、填空題(11-14每小題3分,15-18每小題4份,共28分)【答案】-1【考點】特殊角的三角函數(shù)值實數(shù)的運算立方根的性質【解析】直接利用特殊角的三角函數(shù)值以及立方根的性質分別化簡得出答案【解答】原式×-21-2-1【答案】4a(a+2)(a-2)【考點】提公因式法與公式

16、法的綜合運用【解析】原式提取a,再利用平方差公式分解即可【解答】原式=4a(a2-4)=4a(a+2)(a-2),【答案】2.2×10-8【考點】科學記數(shù)法-表示較小的數(shù)【解析】此題暫無解析【解答】此題暫無解答【答案】3【考點】算術平均數(shù)眾數(shù)【解析】此題暫無解析【解答】此題暫無解答【答案】100(1+)【考點】解直角三角形的應用【解析】直接利用銳角三角函數(shù)關系進而分別表示出A,B分別到BM,CN的距離進而得出答案【解答】過點A作AEBM于點E,BFCN于點F, 為30,為45,ABBC200米, sin30,sin45, AEABsin30100(米),BFBCsin45100(米)

17、, 他下降的高度為:AE+BF100(1+)米【答案】2-4【考點】扇形面積的計算【解析】連接DO,根據(jù)題意,可知DAO45,DOA90,再根據(jù)圖形可知陰影部分的面積是扇形CAB的面積減去空白部分BAD的面積再加扇形AOD的面積減AOD的面積,然后代入數(shù)據(jù)計算即可【解答】解:連接DO, 線段AC交以AB為直徑的半圓弧的中點D,AB=4, DAO=45,DOA=90,DO=AO=2, 陰影部分的面積是:(45×42360-90×22360-2×22)+(90×22360-2×22)=2-4.故答案為:2-4.【答案】【考點】反比例函數(shù)與一次函數(shù)的

18、綜合【解析】設A點坐標為(a,),C點坐標為(b,0),根據(jù)線段中點坐標公式得到B點坐標為(,),利用反比例函數(shù)圖象上點的坐標特征得到k,得到b3a,然后根據(jù)三角形面積公式得到3a,于是可計算出k【解答】設A點坐標為(a,),C點坐標為(b,0), B恰為線段AC的中點, B點坐標為(,), B點在反比例函數(shù)圖象上, k, b3a, SOAC, b, 3a, k【答案】2或5【考點】二次函數(shù)圖象上點的坐標特征拋物線與x軸的交點【解析】拋物線yax2+bx+c經(jīng)過A(-1,4),B(2,4),即yax2+bx+c4時,x-1或2,則將上述拋物線向右平移3個單位得到y(tǒng)a(x-3)2+b(x-3)+

19、c,進而求解【解答】拋物線yax2+bx+c經(jīng)過A(-1,4),B(2,4),即yax2+bx+c4時,x-1或2,則將上述拋物線向右平移3個單位得到y(tǒng)a(x-3)2+b(x-3)+c,則y4時,即ya(x-3)2+b(x-3)+c4,即a(x-3)2-43b-bx-c,則點A、B也向右平移了3個單位,則x2或5,三、解答題(共62分)【答案】-+, a與2、3構成ABC的三邊,a為整數(shù), 3-2<a<3+2, 1<a<5, a為2,3,4, 分式的分母a2-40,a2-3a0,2-a0, a只能為4,當a4時,原式1【考點】分式的化簡求值三角形三邊關系【解析】先算乘法

20、,再算減法,求出啊的值,最后求出答案即可【解答】-+, a與2、3構成ABC的三邊,a為整數(shù), 3-2<a<3+2, 1<a<5, a為2,3,4, 分式的分母a2-40,a2-3a0,2-a0, a只能為4,當a4時,原式1【答案】 ACB和ECD都是等腰直角三角形,CACB,CECD, ECDACB90, ECD-ACDACB-ACD,即ECADCB,在ECA和DCB中, ECADCB(SAS), EBDC, E+EDC90,即ADB90; ECADCB, BDAE2, ADB90,AD4, AB2AD2+BD220, ACB90,CACB, AB2AC2+BC22

21、0, 【考點】等腰直角三角形全等三角形的性質與判定【解析】(1)由“SAS”可證ECADCB,可得EBDC,由余角的性質可求解;(2)由全等三角形的性質可求BDAE2,由勾股定理可求解【解答】 ACB和ECD都是等腰直角三角形,CACB,CECD, ECDACB90, ECD-ACDACB-ACD,即ECADCB,在ECA和DCB中, ECADCB(SAS), EBDC, E+EDC90,即ADB90; ECADCB, BDAE2, ADB90,AD4, AB2AD2+BD220, ACB90,CACB, AB2AC2+BC220, 【答案】關于x的方程0有兩個不相等的實數(shù)根 ,解得m>

22、-1且m0假設存在實數(shù)m,使方程兩實數(shù)根的倒數(shù)和為2設方程0的兩根為x1、x2 , x1+x22x1x2即,解得 不存在實數(shù)m使方程兩根的倒數(shù)和為2【考點】根與系數(shù)的關系根的判別式【解析】(1)根據(jù)根的判別式即可求出答案(2)假設存在實數(shù)m,使方程兩實數(shù)根的倒數(shù)和為2,根據(jù)根與系數(shù)的關系即可求出m的值【解答】關于x的方程0有兩個不相等的實數(shù)根 ,解得m>-1且m0假設存在實數(shù)m,使方程兩實數(shù)根的倒數(shù)和為2設方程0的兩根為x1、x2 , x1+x22x1x2即,解得 不存在實數(shù)m使方程兩根的倒數(shù)和為2【答案】100,54 抽查的100名學生中,喜歡用“短信”溝通的人數(shù)為:100×

23、5%5(人), 喜歡用“微信”進行溝通的學生有:100-20-5-15-15-540(人),將條形統(tǒng)計圖補充完整如圖:2000×800(名),即該校共有2000名學生,估計該校最喜歡用“微信”進行溝通的學生有800名;畫出樹狀圖,如圖所示:所有情況共有16種情況,其中甲、乙兩名同學恰好選擇同一種溝通方式的共有4種情況,故甲、乙兩名同學恰好選中同一種溝通方式的概率為:【考點】條形統(tǒng)計圖用樣本估計總體列表法與樹狀圖法扇形統(tǒng)計圖【解析】(1)根據(jù)喜歡電話溝通的人數(shù)與百分比即可求出共抽查人數(shù),求出喜歡用“釘釘”溝通的人數(shù)即可求出表示“釘釘”的扇形圓心角度數(shù);(2)計算出喜歡用短信與微信的人數(shù)

24、即可補全統(tǒng)計圖;(3)用樣本中喜歡用微信進行溝通的百分比來估計2500名學生中喜歡用微信進行溝通的人數(shù)即可求出答案;(4)列出樹狀圖分別求出所有情況以及甲、乙兩名同學恰好選中同一種溝通方式的情況后,利用概率公式即可求出甲、乙兩名同學恰好選中同一種溝通方式的概率【解答】喜歡用電話溝通的人數(shù)為20,所占百分比為20%, 此次共抽查了:20÷20%100(人), 表示“釘釘”和“QQ”的扇形圓心角相等, 喜歡用“釘釘”和“QQ”溝通的人數(shù)相等, 喜歡用“釘釘”溝通的人數(shù)為15人, 表示“釘釘”的扇形圓心角的度數(shù)為360×54;故答案為:100;54; 抽查的100名學生中,喜歡用

25、“短信”溝通的人數(shù)為:100×5%5(人), 喜歡用“微信”進行溝通的學生有:100-20-5-15-15-540(人),將條形統(tǒng)計圖補充完整如圖:2000×800(名),即該校共有2000名學生,估計該校最喜歡用“微信”進行溝通的學生有800名;畫出樹狀圖,如圖所示:所有情況共有16種情況,其中甲、乙兩名同學恰好選擇同一種溝通方式的共有4種情況,故甲、乙兩名同學恰好選中同一種溝通方式的概率為:【答案】設公司購買x輛轎車,則購買(10-x)輛面包車,依題意,得:,解得:3x5,又 x為正整數(shù), x可以取3,4,5, 該公司共有3種購買方案,方案1:購買3輛轎車,7輛面包車;

26、方案2:購買4輛轎車,6輛面包車;方案3:購買5輛轎車,5輛面包車依題意,得:250x+150(10-x)2000,解得:x5,又 3x5, x5, 公司應該選擇購買方案3:購買5輛轎車,5輛面包車【考點】一元一次不等式組的應用【解析】(1)設公司購買x輛轎車,則購買(10-x)輛面包車,根據(jù)“轎車至少要購買3輛,且公司可投入的購車款不超過100萬元”,即可得出關于x的一元一次不等式組,解之即可得出x的取值范圍,再結合x為正整數(shù),即可得出各購買方案;(2)根據(jù)這10輛車的日租金不低于2000元,即可得出關于x的一元一次不等式,解之即可得出x的取值范圍,再結合3x5,即可得出應該選擇的購買方案【

27、解答】設公司購買x輛轎車,則購買(10-x)輛面包車,依題意,得:,解得:3x5,又 x為正整數(shù), x可以取3,4,5, 該公司共有3種購買方案,方案1:購買3輛轎車,7輛面包車;方案2:購買4輛轎車,6輛面包車;方案3:購買5輛轎車,5輛面包車依題意,得:250x+150(10-x)2000,解得:x5,又 3x5, x5, 公司應該選擇購買方案3:購買5輛轎車,5輛面包車【答案】證明:如圖1,連接OE, AB是O的直徑, AEB90, EAB+B90, OAOE, OAEAEO, B+AEO90, PEAB, PEA+AEO90, PEO90,又 OE為半徑, PE是O的切線;如圖2,連接

28、OD, D為AC的中點, ODAC,設垂足為M, AMO90, DEAB, AFD90, AOD+OAMOAM+AGF90, AODAGF, AEBEFB90, BAEF, PEAB, PEF2B, DEAB, AE=AD, AOD2B, PEFAODAGF, HEHG;如圖3, PEFAOD,PFEDFO, PODF, tanPtanODF=OFDF=512,設OF5x,則DF12x, OD=OF2+DF2=13x, BFOF+OB5x+13x18x,AFOA-OF13x-5x8x, DEOA, EFDF12x, AE=AF2+EF2=413x,BE=EF2+BF2=613x, PEAB,E

29、PABPE, PEAPBE, PAPE=AEBE=413613=23, P+PEFFAG+AGF90, HEGHGE, PFAG,又 FAGPAH, PPAH, PHAH,過點H作HKPA于點K, PKAK, PKPE=13, tanP=512,設HK5a,PK12a, PH13a, AH13a,PE36a, HEHG36a-13a23a, AGGH-AH23a-13a10a, AHAG=13a10a=1310【考點】圓與圓的綜合與創(chuàng)新圓與相似的綜合圓與函數(shù)的綜合【解析】(1)連接OE,由圓周角定理證得EAB+B90,可得出OAEAEO,則PEA+AEO90,即PEO90,則結論得證;(2)連

30、接OD,證得AODAGF,BAEF,可得出PEF2B,AOD2B,可證得PEFAODAGF,則結論得證;(3)可得出tanPtanODF=OFDF=512,設OF5x,則DF12x,求出AE,BE,得出AEBE=23,證明PEAPBE,得出PAPE=23,過點H作HKPA于點K,證明PPAH,得出PHAH,設HK5a,PK12a,得出PH13a,可得出AH13a,AG10a,則可得出答案【解答】證明:如圖1,連接OE, AB是O的直徑, AEB90, EAB+B90, OAOE, OAEAEO, B+AEO90, PEAB, PEA+AEO90, PEO90,又 OE為半徑, PE是O的切線;

31、如圖2,連接OD, D為AC的中點, ODAC,設垂足為M, AMO90, DEAB, AFD90, AOD+OAMOAM+AGF90, AODAGF, AEBEFB90, BAEF, PEAB, PEF2B, DEAB, AE=AD, AOD2B, PEFAODAGF, HEHG;如圖3, PEFAOD,PFEDFO, PODF, tanPtanODF=OFDF=512,設OF5x,則DF12x, OD=OF2+DF2=13x, BFOF+OB5x+13x18x,AFOA-OF13x-5x8x, DEOA, EFDF12x, AE=AF2+EF2=413x,BE=EF2+BF2=613x,

32、PEAB,EPABPE, PEAPBE, PAPE=AEBE=413613=23, P+PEFFAG+AGF90, HEGHGE, PFAG,又 FAGPAH, PPAH, PHAH,過點H作HKPA于點K, PKAK, PKPE=13, tanP=512,設HK5a,PK12a, PH13a, AH13a,PE36a, HEHG36a-13a23a, AGGH-AH23a-13a10a, AHAG=13a10a=1310【答案】(1) 拋物線y-x2+bx+c經(jīng)過點A(2,0)和點(-1,2), -4+2b+c=0-1-b+c=2,得b=13c=103,即該拋物線的解析式為y-x2+13x+103;(2) P(m,t)為拋物線上的一個動點,點P關于原點的對稱點為P', 點P'(-m,-t), 點P和點P'落在該拋物線y-x2+13x+103上, t=-m2+13m+103-t=-m2-13m+103, (-m2+13m+103)+(-m2-13m+103)0,解得,m1=303,m2=-303,即m的值是303或-303;()當點G落在y軸上時,如右圖1所示,過點P作PMOA于點M, 四邊形APFG是正方形, APGA,PAG90, PAM+GAO90, AOG90, AGO+GAO90, PAMAGO,又 PMA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論